transfomer中Multi-Head Attention的源码实现

2024-01-17 02:12

本文主要是介绍transfomer中Multi-Head Attention的源码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

Multi-Head Attention是一种注意力机制,是transfomer的核心机制,就是图中黄色框内的部分.
在这里插入图片描述

Multi-Head Attention的原理是通过将模型分为多个头,形成多个子空间,让模型关注不同方面的信息。每个头独立进行注意力运算,得到一个注意力权重矩阵。输出的结果再通过线性变换和拼接操作组合在一起。这样可以提高模型的表示能力和泛化性能。
在Multi-Head Attention中,每个头的权重矩阵是随机初始化生成的,并在训练过程中通过梯度下降等优化算法进行更新。通过这种方式,模型可以学习到如何将输入序列的不同部分关联起来,从而捕获更多的上下文信息。
总之,Multi-Head Attention通过将模型分为多个头,形成多个子空间,让模型关注不同方面的信息,提高了模型的表示能力和泛化性能。它的源码实现基于Scaled Dot-Product Attention,通过并行运算和组合输出来实现多头注意力机制。

源码实现:

具体源码及其注释如下,配好环境可直接运行:

import torch
from torch import nnclass MultiheadAttention(nn.Module):def __init__(self,embed_dim,num_heads,att_dropout=0.1,out_dropout=0.1,average_attn_weights=True,use_separate_proj_weight = False,device=None,dtype=None):super(MultiheadAttention, self).__init__()self.embed_dim = embed_dimself.num_heads = num_headsself.att_dropout = nn.Dropout(att_dropout)self.out_dropout = nn.Dropout(out_dropout)self.average_attn_weights = average_attn_weightsself.head_dim = embed_dim // num_headsself.scale = self.head_dim ** 0.5assert self.embed_dim == self.num_heads * self.head_dim, \'embed_dim <{}> must be divisible by num_heads <{}>'.format(self.embed_dim, self.num_heads)self.fuse_heads = nn.Linear(self.embed_dim, self.embed_dim)factory_kwargs = {'device': device, 'dtype': dtype}self.use_separate_proj_weight = use_separate_proj_weight # 是否对输入进行线性映射if not use_separate_proj_weight:self.in_proj_weight = nn.Parameter(torch.empty((3 * embed_dim, embed_dim), **factory_kwargs))self.in_proj_bias = nn.Parameter(torch.empty(3 * embed_dim, **factory_kwargs))self._reset_parameters()def _reset_parameters(self):nn.init.xavier_uniform_(self.in_proj_weight)nn.init.constant_(self.in_proj_bias, 0.)def forward(self,query: torch.Tensor,key: torch.Tensor,value: torch.Tensor,identity=None,query_pos=None,key_pos=None,use_separate_proj_weight: bool = False):'''Args:query:key:value:identity:query_pos:key_pos:use_separate_proj_weight: 参考pytorchReturns:'''assert query.dim() == 3 and key.dim() == 3 and value.dim() == 3assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"tgt_len, bsz, embed_dim = query.shape  # [查询数量 batch数量 特征维度]src_len, _, _ = key.shape  # [被查询数量,_,_]# 默认和query进行shortcut(要在位置编码前,因为output为输出特征,特征和原特征shortcut,下一层再重新加位置编码,否则不就重了)if identity is None:identity = query.clone()# 位置编码if query_pos is not None:query = query + query_posif key_pos is not None:key = key + key_pos# 是否需要对输入进行映射,mmcv中 q=k=v,那么就需要此处进行映射if not self.use_separate_proj_weight:assert self.in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None"query, key, value = nn.functional._in_projection_packed(query, key, value, self.in_proj_weight, self.in_proj_bias)# 特征划分为self.num_heads 份 [tgt,b,embed_dim] -> [b,n_h, tgt, d_h]# [n,b,n_h*d_h] -> [b,n_h,n,d_h] 主要是target和source之前的特征匹配和提取, batch和n_h维度不处理query = query.contiguous().view(tgt_len, bsz, self.num_heads, self.head_dim).permute(1, 2, 0, 3)key = key.contiguous().view(src_len, bsz, self.num_heads, self.head_dim).permute(1, 2, 0, 3)value = value.contiguous().view(src_len, bsz, self.num_heads, self.head_dim).permute(1, 2, 0, 3)# [b,n_h,tgt_len,src_len]# Scaled Dot-Product Attentionattention = query @ key.transpose(-2, -1)attention /= self.scale  # 参考: https://blog.csdn.net/zwhdldz/article/details/135462127attention = torch.softmax(attention, dim=-1)  # 行概率矩阵attention = self.att_dropout(input=attention)  # 正则化方法 DropKey,用于缓解 Vision Transformer 中的过拟合问题# [b,n_h,tgt_len,d_h] = [b,n_h,tgt_len,src_len] * [b,n_h,src_len,d_h]output = attention @ value# [b,n_h,tgt_len,d_h] -> [b,tgt_len,embed_dim]output = output.permute(0, 2, 1, 3).contiguous().view(tgt_len, bsz, embed_dim)# 头之间通过全连接融合一下output = self.fuse_heads(output)output = self.out_dropout(output)# shortcutoutput = output + identity# 多头head求平均if self.average_attn_weights:attention = attention.sum(dim=1) / self.num_heads# [tgt_len,b,embed_dim],[b,tgt_len,src_len]return output, attentionif __name__ == '__main__':query = torch.rand(size=(10, 2, 64))key = torch.rand(size=(5, 2, 64))value = torch.rand(size=(5, 2, 64))query_pos = torch.rand(size=(10, 2, 64))key_pos = torch.rand(size=(5, 2, 64))att = MultiheadAttention(64, 4)# 返回特征采样结果和attention矩阵output = att(query=query, key=key, value=value,query_pos=query_pos,key_pos=key_pos)pass

具体流程说明:

  1. 将input映射为qkv,如果是cross_attention,q与kv的行数可以不同,但列数(编码维度/通道数)必须相同
  2. q和v附加位置编码
  3. Scaled Dot-Product :通过计算Query和Key之间的点积除以scale得到注意力权重,经过dropout再与Value矩阵相乘得到输出。*scale和dropout的说明参考我的上一篇博客
  4. 输出的结果再通过线性变换融合多头信息。

在实现中,参考pytorch我在内部加输入映射,具体作用参考下一篇博客。

这篇关于transfomer中Multi-Head Attention的源码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/614624

相关文章

Java根据IP地址实现归属地获取

《Java根据IP地址实现归属地获取》Ip2region是一个离线IP地址定位库和IP定位数据管理框架,这篇文章主要为大家详细介绍了Java如何使用Ip2region实现根据IP地址获取归属地,感兴趣... 目录一、使用Ip2region离线获取1、Ip2region简介2、导包3、下编程载xdb文件4、J

PyQt5+Python-docx实现一键生成测试报告

《PyQt5+Python-docx实现一键生成测试报告》作为一名测试工程师,你是否经历过手动填写测试报告的痛苦,本文将用Python的PyQt5和python-docx库,打造一款测试报告一键生成工... 目录引言工具功能亮点工具设计思路1. 界面设计:PyQt5实现数据输入2. 文档生成:python-

Android实现一键录屏功能(附源码)

《Android实现一键录屏功能(附源码)》在Android5.0及以上版本,系统提供了MediaProjectionAPI,允许应用在用户授权下录制屏幕内容并输出到视频文件,所以本文将基于此实现一个... 目录一、项目介绍二、相关技术与原理三、系统权限与用户授权四、项目架构与流程五、环境配置与依赖六、完整

浅析如何使用xstream实现javaBean与xml互转

《浅析如何使用xstream实现javaBean与xml互转》XStream是一个用于将Java对象与XML之间进行转换的库,它非常简单易用,下面将详细介绍如何使用XStream实现JavaBean与... 目录1. 引入依赖2. 定义 JavaBean3. JavaBean 转 XML4. XML 转 J

Flutter实现文字镂空效果的详细步骤

《Flutter实现文字镂空效果的详细步骤》:本文主要介绍如何使用Flutter实现文字镂空效果,包括创建基础应用结构、实现自定义绘制器、构建UI界面以及实现颜色选择按钮等步骤,并详细解析了混合模... 目录引言实现原理开始实现步骤1:创建基础应用结构步骤2:创建主屏幕步骤3:实现自定义绘制器步骤4:构建U

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

Android实现定时任务的几种方式汇总(附源码)

《Android实现定时任务的几种方式汇总(附源码)》在Android应用中,定时任务(ScheduledTask)的需求几乎无处不在:从定时刷新数据、定时备份、定时推送通知,到夜间静默下载、循环执行... 目录一、项目介绍1. 背景与意义二、相关基础知识与系统约束三、方案一:Handler.postDel

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句