Tensorflow2中ImageDataGenerator中flow_from_directory()和image_dataset_from_directory()区别

本文主要是介绍Tensorflow2中ImageDataGenerator中flow_from_directory()和image_dataset_from_directory()区别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这两个函数经常用来从文件夹创建和加载深度学习的数据集,有些类似,但也有不同,不同在于函数参数和数据返回的类型不一样。

1.flow_from_directory()

keras_preprocessing.image.image_data_generator.ImageDataGenerator.flow_from_directory()

def flow_from_directory(self,directory: Any,target_size: Tuple[int, int] = (256, 256),color_mode: str = 'rgb',classes: Any = None,class_mode: str = 'categorical',batch_size: int = 32,shuffle: bool = True,seed: Any = None,save_to_dir: Any = None,save_prefix: str = '',save_format: str = 'png',follow_links: bool = False,subset: Any = None,interpolation: str = 'nearest') -> DirectoryIterator

Returns

一个产生(x,y)元组的目录迭代器(DirectoryIterator)。
其中x是包含一批(batch_size,* target_size,channels)类型的图像的numpy数组,y是对应标签的numpy数组。

参数说明:

  • 目录(directory):字符串,目标目录的路径。每个类应该包含一个子目录。生成器中将包含每个子目录树中的任何PNG、JPG、BMP、PPM或TIF图像。有关详细信息,请参阅(https://gist.github.com/fchollet/0830affa1f7f19fd47b06d4cf89ed44d)。
  • 目标大小(target_size):整数的元组(高度、宽度)。默认值:(256,256)。将调整找到的所有图像的尺寸。
  • 颜色_模式(color_mode):“灰度”、“rgb”、“rgba”之一。默认值:“rgb”。是否将图像转换为具有1、3或4个通道。
  • 类列表(classes):类子目录的可选列表。(例如,“狗”、“猫”)。默认值:无。如果没有提供,将根据目录下的子目录名称/结构自动推断类列表,其中每个子目录将被视为不同的类(将映射到标签索引的类的顺序将是字母数字)。包含从类名到类索引的映射的字典可以通过属性class_indexes获得。
  • 类模式:确定返回的标签数组的类型:“分类(“categorical”)”、“二进制(“binary”)”、“稀疏(“sparse”)”、“输入(“input”)”、“无(None)”模式之一。默认值:“分类”。

          “categorial”则是2维one-hot编码标签;
          “binary”则是一维二进制标签;
          “sparse”是1维整数标签;
          “input”是与输入图像相同的图像(主要用于自动编码器);
           None,则不会返回任何标签(生成器将只生成一批图像数据,与model.predict_generator()一起使用非常有用)。请注意,在类模式为“无”的情况下,数据仍然需要驻留在目录的子目录中,以便它正常工作。

  • 批次大小(batch_size):数据批次的大小(默认值:32)。
  • 随机播放(shuffle):是否随机播放数据(默认值:True)。如果设置为False,则按字母数字顺序对数据进行排序。
  • 种子(seed):可选的随机种子,用于洗牌和转换。
  • 保存路径(save_to_dir):none或str(默认值:none)。这允许您选择指定一个目录,将生成的增强图片保存到该目录(对于可视化所做的操作很有用)。
  • 保存前缀(save_prefix): Str. Prefix用于保存图片的文件名(仅当设置了save_to_dir时才相关)。
  • 保存格式(save_format):“png”、“jpeg”之一(仅当设置了save_to_dir时才相关)。默认值:“png”。
  • 跟随链接(follow_links):是否跟随类子目录内的符号链接(默认值:False)。
  • 子集(subset):如果在ImageDataGenerator中设置了验证分割(validation_split),则为数据的子集(训练集"training" 或验证集"validation")。
  • 插值(interpolation):当目标大小与加载的图像大小不同时,用于对图像重新采样的插值方法。支持的方法有最近邻"nearest"、双线性"bilinear"和双三次"bicubic"。如果安装了PIL版本1.1.3或更高版本,还支持“lanczos”。如果安装了PIL 3.4.0或更高版本,还支持“Box”和“Hamming”。默认情况下,使用“nearest”。

来自:flow_from_directory返回值

2.image_dataset_from_directory()

Function

# from tensorflow.keras.preprocessing import image_dataset_from_directorytf.keras.preprocessing.image_dataset_from_directory(directory,labels="inferred",label_mode="int",class_names=None,color_mode="rgb",batch_size=32,image_size=(256, 256),shuffle=True,seed=None,validation_split=None,subset=None,interpolation="bilinear",follow_links=False,
)

Returns

一个tf.data.Dataset对象。

  • 如果label_mode为None,它将生成float32张量,其shape(batch_size, image_size[0], image_size(1), num_channels),并对图像进行编码(有关num_channels的规则,参见下文)。

  • 否则,将生成一个元组(images, labels),其中图像的shape(batch_size, image_size[0], image_size(1), num_channels),并且labels遵循下面描述的格式。

  • 如果label_mode 是 int, labels是形状为(batch_size, )int32张量

  • 如果label_mode 是 binarylabels是形状为(batch_size, 1)的1和0的float32张量。

  • 如果label_mode 是 categoriallabels是形状为(batch_size, num_classes)float32张量,表示类索引的one-hot编码。

color_mode 是 grayscale, 图像张量有1个通道;color_mode 是 rgb, 图像张量有3个通道;color_mode 是 rgba, 图像张量有4个通道。

来自:tf.keras.preprocessing.image_dataset_from_directory

这篇关于Tensorflow2中ImageDataGenerator中flow_from_directory()和image_dataset_from_directory()区别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/614590

相关文章

Vue和React受控组件的区别小结

《Vue和React受控组件的区别小结》本文主要介绍了Vue和React受控组件的区别小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录背景React 的实现vue3 的实现写法一:直接修改事件参数写法二:通过ref引用 DOMVu

Go之errors.New和fmt.Errorf 的区别小结

《Go之errors.New和fmt.Errorf的区别小结》本文主要介绍了Go之errors.New和fmt.Errorf的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考... 目录error的基本用法1. 获取错误信息2. 在条件判断中使用基本区别1.函数签名2.使用场景详细对

Redis中哨兵机制和集群的区别及说明

《Redis中哨兵机制和集群的区别及说明》Redis哨兵通过主从复制实现高可用,适用于中小规模数据;集群采用分布式分片,支持动态扩展,适合大规模数据,哨兵管理简单但扩展性弱,集群性能更强但架构复杂,根... 目录一、架构设计与节点角色1. 哨兵机制(Sentinel)2. 集群(Cluster)二、数据分片

一文带你迅速搞懂路由器/交换机/光猫三者概念区别

《一文带你迅速搞懂路由器/交换机/光猫三者概念区别》讨论网络设备时,常提及路由器、交换机及光猫等词汇,日常生活、工作中,这些设备至关重要,居家上网、企业内部沟通乃至互联网冲浪皆无法脱离其影响力,本文将... 当谈论网络设备时,我们常常会听到路由器、交换机和光猫这几个名词。它们是构建现代网络基础设施的关键组成

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

JAVA覆盖和重写的区别及说明

《JAVA覆盖和重写的区别及说明》非静态方法的覆盖即重写,具有多态性;静态方法无法被覆盖,但可被重写(仅通过类名调用),二者区别在于绑定时机与引用类型关联性... 目录Java覆盖和重写的区别经常听到两种话认真读完上面两份代码JAVA覆盖和重写的区别经常听到两种话1.覆盖=重写。2.静态方法可andro

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域

MyBatis中$与#的区别解析

《MyBatis中$与#的区别解析》文章浏览阅读314次,点赞4次,收藏6次。MyBatis使用#{}作为参数占位符时,会创建预处理语句(PreparedStatement),并将参数值作为预处理语句... 目录一、介绍二、sql注入风险实例一、介绍#(井号):MyBATis使用#{}作为参数占位符时,会

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

Javaee多线程之进程和线程之间的区别和联系(最新整理)

《Javaee多线程之进程和线程之间的区别和联系(最新整理)》进程是资源分配单位,线程是调度执行单位,共享资源更高效,创建线程五种方式:继承Thread、Runnable接口、匿名类、lambda,r... 目录进程和线程进程线程进程和线程的区别创建线程的五种写法继承Thread,重写run实现Runnab