transbigdata 笔记: 轨迹密集化/稀疏化 轨迹平滑

2024-01-17 01:12

本文主要是介绍transbigdata 笔记: 轨迹密集化/稀疏化 轨迹平滑,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 密集化

transbigdata.traj_densify(data, col=['Vehicleid', 'Time', 'Lng', 'Lat'], timegap=15)

轨迹致密化,保证至多每隔timegap秒都有一个轨迹点

这边插补使用的是pandas的interpolate,method设置的是index

1.1 举例

transbigdata 笔记: 官方文档示例3:车辆轨迹数据处理-CSDN博客

2 稀疏化

transbigdata.traj_sparsify(data, col=['Vehicleid', 'Time', 'Lng', 'Lat'], timegap=15, method='subsample')

扩展采样间隔并减少数据量

  • method可以是interpolate/subsample

1.2 举例

transbigdata 笔记: 官方文档示例3:车辆轨迹数据处理-CSDN博客

3 轨迹平滑

  • 在处理车辆轨迹数据时,轨迹点表示对车辆实际“状态”的“观察”。由于误差,观察到的数据可能与车辆的实际状态有所不同。
  • 那么,如何更准确地估计车辆的实际状态呢?
    • 一种方式是,将轨迹点的位置与先前轨迹点的位置进行比较,以检查显著和不合理的跳跃
    • 换言之,根据车辆先前的轨迹预测车辆未来可能的位置。如果下一个记录的轨迹点明显偏离预期位置,则可以确定轨迹异常。
  • 这种方法与卡尔曼滤波的概念有相似之处
    • 将先前位置推导的状态估计(当前轨迹点的预测位置)与当前观测数据(当前轨迹点的观测位置)相结合,以获得当前状态(实际位置)的最优估计

  • 卡尔曼滤波器适用于轨迹数据中噪声相对稳定的情况,这意味着噪声方差保持不变。它在平滑由轨迹数据中的测量误差引起的小规模波动方面特别有效。
  • 当轨迹中出现显著漂移时,卡尔曼滤波器的有效性是有限的。漂移点被视为观测值,对状态估计有重大影响,卡尔曼滤波器无法直接处理。
  • ——>常见的方法是先去除漂移,然后进行平滑,最后进行路网匹配

3.1 方法介绍

transbigdata.traj_smooth(data, col=['id', 'time', 'lon', 'lat'], proj=False, process_noise_std=0.5, measurement_noise_std=1)
data 轨迹数据
proj 是否进行等距投影
process_noise_std 过程噪声的标准偏差【上一时刻的状态预测当前时刻的状态,这个时刻产生的误差】
measurement_noise_std测量噪声的标准偏差【观测位置的误差】

3.2 举例

transbigdata 笔记: 官方文档示例3:车辆轨迹数据处理-CSDN博客

这篇关于transbigdata 笔记: 轨迹密集化/稀疏化 轨迹平滑的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/614492

相关文章

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Nginx进行平滑升级的实战指南(不中断服务版本更新)

《Nginx进行平滑升级的实战指南(不中断服务版本更新)》Nginx的平滑升级(也称为热升级)是一种在不停止服务的情况下更新Nginx版本或添加模块的方法,这种升级方式确保了服务的高可用性,避免了因升... 目录一.下载并编译新版Nginx1.下载解压2.编译二.替换可执行文件,并平滑升级1.替换可执行文件

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit