transfomer中Decoder和Encoder的base_layer的源码实现

2024-01-16 11:28

本文主要是介绍transfomer中Decoder和Encoder的base_layer的源码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

Encoder和Decoder共同组成transfomer,分别对应图中左右浅绿色框内的部分.
在这里插入图片描述
Encoder:
目的:将输入的特征图转换为一系列自注意力的输出。
工作原理:首先,通过卷积神经网络(CNN)提取输入图像的特征。然后,这些特征通过一系列自注意力的变换层进行处理,每个变换层都会将特征映射进行编码并产生一个新的特征映射。这个过程旨在捕捉图像中的空间和通道依赖关系。
作用:通过处理输入特征,提取图像特征并进行自注意力操作,为后续的目标检测任务提供必要的特征信息。
Decoder:
目的:接受Encoder的输出,并生成对目标类别和边界框的预测。
工作原理:首先,它接收Encoder的输出,然后使用一系列解码器层对目标对象之间的关系和全局图像上下文进行推理。这些解码器层将最终的目标类别和边界框的预测作为输出。
作用:基于Encoder的输出和全局上下文信息,生成目标类别和边界框的预测结果。
总结:Encoder就是特征提取类似卷积;Decoder用于生成box,类似head

源码实现:

Encoder 通常是6个encoder_layer组成,Decoder 通常是6个decoder_layer组成
我实现了核心的BaseTransformerLayer层,可以用来定义encoder_layer和decoder_layer

具体源码及其注释如下,配好环境可直接运行(运行依赖于上一个博客的代码):

import torch
from torch import nn
from ZMultiheadAttention import MultiheadAttention  # 来自上一次写的attensionclass FFN(nn.Module):def __init__(self,embed_dim=256,feedforward_channels=1024,act_cfg='ReLU',ffn_drop=0.,):super(FFN, self).__init__()self.l1 = nn.Linear(in_features=embed_dim, out_features=feedforward_channels)if act_cfg == 'ReLU':self.act1 = nn.ReLU(inplace=True)else:self.act1 = nn.SiLU(inplace=True)self.d1 = nn.Dropout(p=ffn_drop)self.l2 = nn.Linear(in_features=feedforward_channels, out_features=embed_dim)self.d2 = nn.Dropout(p=ffn_drop)def forward(self, x):tmp = self.d1(self.act1(self.l1(x)))tmp = self.d2(self.l2(tmp))x = tmp + xreturn x# transfomer encode和decode的最小循环单元,用于打包self_attention或者cross_attention
class BaseTransformerLayer(nn.Module):def __init__(self,attn_cfgs=[dict(embed_dim=64, num_heads=4), dict(embed_dim=64, num_heads=4)],fnn_cfg=dict(embed_dim=64, feedforward_channels=128, act_cfg='ReLU', ffn_drop=0.),operation_order=('self_attn', 'norm', 'cross_attn', 'norm', 'ffn', 'norm')):super(BaseTransformerLayer, self).__init__()self.attentions = nn.ModuleList()# 搭建att层for attn_cfg in attn_cfgs:self.attentions.append(MultiheadAttention(**attn_cfg))self.embed_dims = self.attentions[0].embed_dim# 统计norm数量 并搭建self.norms = nn.ModuleList()num_norms = operation_order.count('norm')for _ in range(num_norms):self.norms.append(nn.LayerNorm(normalized_shape=self.embed_dims))# 统计ffn数量 并搭建self.ffns = nn.ModuleList()self.ffns.append(FFN(**fnn_cfg))self.operation_order = operation_orderdef forward(self, query, key=None, value=None, query_pos=None, key_pos=None):attn_index = 0norm_index = 0ffn_index = 0for order in self.operation_order:if order == 'self_attn':temp_key = temp_value = query  # 不用担心三个值一样,在attention里面会重映射qkvquery, attention = self.attentions[attn_index](query,temp_key,temp_value,query_pos=query_pos,key_pos=query_pos)attn_index += 1elif order == 'cross_attn':query, attention = self.attentions[attn_index](query,key,value,query_pos=query_pos,key_pos=key_pos)attn_index += 1elif order == 'norm':query = self.norms[norm_index](query)norm_index += 1elif order == 'ffn':query = self.ffns[ffn_index](query)ffn_index += 1return queryif __name__ == '__main__':query = torch.rand(size=(10, 2, 64))key = torch.rand(size=(5, 2, 64))value = torch.rand(size=(5, 2, 64))query_pos = torch.rand(size=(10, 2, 64))key_pos = torch.rand(size=(5, 2, 64))# encoder 通常是6个encoder_layer组成 每个encoder_layer['self_attn', 'norm', 'ffn', 'norm']encoder_layer = BaseTransformerLayer(attn_cfgs=[dict(embed_dim=64, num_heads=4)],fnn_cfg=dict(embed_dim=64, feedforward_channels=1024, act_cfg='ReLU',ffn_drop=0.),operation_order=('self_attn', 'norm', 'ffn', 'norm'))encoder_layer_output = encoder_layer(query=query, query_pos=query_pos, key_pos=key_pos)# decoder 通常是6个decoder_layer组成 每个decoder_layer['self_attn', 'norm', 'cross_attn', 'norm', 'ffn', 'norm']decoder_layer = BaseTransformerLayer(attn_cfgs=[dict(embed_dim=64, num_heads=4), dict(embed_dim=64, num_heads=4)],fnn_cfg=dict(embed_dim=64, feedforward_channels=1024, act_cfg='ReLU',ffn_drop=0.),operation_order=('self_attn', 'norm', 'cross_attn', 'norm', 'ffn', 'norm'))decoder_layer_output = decoder_layer(query=query, key=key, value=value, query_pos=query_pos, key_pos=key_pos)pass

具体流程说明:

Encoder 通常是6个encoder_layer组成,每个encoder_layer[‘self_attn’, ‘norm’, ‘ffn’, ‘norm’]
Decoder 通常是6个decoder_layer组成,每个decoder_layer[‘self_attn’, ‘norm’, ‘cross_attn’, ‘norm’, ‘ffn’, ‘norm’]
按照以上方式搭建网络即可
其中norm为LayerNorm,在样本内部进行归一化。

这篇关于transfomer中Decoder和Encoder的base_layer的源码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/612428

相关文章

Flutter实现文字镂空效果的详细步骤

《Flutter实现文字镂空效果的详细步骤》:本文主要介绍如何使用Flutter实现文字镂空效果,包括创建基础应用结构、实现自定义绘制器、构建UI界面以及实现颜色选择按钮等步骤,并详细解析了混合模... 目录引言实现原理开始实现步骤1:创建基础应用结构步骤2:创建主屏幕步骤3:实现自定义绘制器步骤4:构建U

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

Android实现定时任务的几种方式汇总(附源码)

《Android实现定时任务的几种方式汇总(附源码)》在Android应用中,定时任务(ScheduledTask)的需求几乎无处不在:从定时刷新数据、定时备份、定时推送通知,到夜间静默下载、循环执行... 目录一、项目介绍1. 背景与意义二、相关基础知识与系统约束三、方案一:Handler.postDel

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义