如何通过ISPC使用Xe(核显)进行计算

2024-01-16 06:20
文章标签 进行 使用 计算 xe 核显 ispc

本文主要是介绍如何通过ISPC使用Xe(核显)进行计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我一直以为 ISPC 的 Xe 是只包含独立显卡的,比如 A770 这些,没想到看了眼文档是可以使用核显的,但只能在 Linux 和 Windows 上,macOS 不行,就想试试看。

写本文是因为 ISPC 已经出现了三四个版本的大改,但是官方文档Intel® ISPC for Xe并未提及这些。不过这篇官方文档依旧可以带来很多帮助。

准备工作

本文使用 Windows 系统进行操作,Linux 操作类似。(实际使用建议使用 Linux,Windows 上毛病比较多)

此外需要注意不能使用 WSL。个人猜测是因为 WSL 无法识别核显型号,因为 lspci的结果中,显卡显示是3D controller,而不是正经 Linux 发行版中的,比如VGA compatible controller(厂商数据也不对)。CUDA 是通过一个库实现的,也就是中继的,但是 Intel 好像没有弄这样的库。

此外,ISPC 最新的 Windows 版本针对我的核显的代码不能用:编译没问题,但是运行不成功,显示版本问题。原因是我使用的 UHD 630 是 Gen 9 的,而目前 Windows 版本只支持 11-13 代或者 Arc 独显。

目前 Windows 版本只支持 11-13 代或者独显

所以如果你和我遇到一样的问题,那么请安装 v1.18.1 或者 v1.18.0 的 ISPC,这样就可以成功运行了。

成功准备好 ISPC 之后,安装 Level Zero Loader。方法很简单,下载level-zero-sdk,之后配置环境变量LEVEL_ZERO_PATH即可。

运行原理

ISPC Runtime 是 Level Zero 的高级化产物(类似汇编语言和高级语言的关系),可以通过 Level Zero 控制 CPU 和 GPU。所以程序是将 ISPC 编译后得到的 ISPCRT objects 交给 ISPC Runtime,由 ISPC Runtime 决定是 CPU 还是 GPU 运行,并进行操作(但这个内容是在 ISPCRT Object 中设置的)。ISPCRT Object 是 SPIR-V 格式的,存放文件后缀为.spv

如果你熟悉 Java 的话就很好理解,ISPC 就是 javac,ISPC Runtime 就是 Java。

需要注意一点,如果你只需要代码运行在 CPU 上,那么不需要 ispcrt,只需要ispc编译器即可。

示例代码

示例代码是 ISPC 示例中的 Simple。Simple 项目有两个文件:simple.cppsimple.ispc

simple.cpp的内容如下:

#include <algorithm>
#include <cmath>
#include <iomanip>
#include <iostream>// ispcrt
#include "ispcrt.hpp"std::ostream &operator<<(std::ostream &os, const ISPCRTDeviceType dt) {switch (dt) {case ISPCRT_DEVICE_TYPE_AUTO:os << "Auto";break;case ISPCRT_DEVICE_TYPE_GPU:os << "GPU";break;case ISPCRT_DEVICE_TYPE_CPU:os << "CPU";break;default:break;}return os;
}struct Parameters {float *vin;float *vout;int count;
};void simple_CPU_validation(std::vector<float> vin, std::vector<float> &vgold, const unsigned int SIZE) {for (unsigned int i = 0; i < SIZE; i++) {float v = vin[i];if (v < 3.)v = v * v;elsev = std::sqrt(v);vgold[i] = v;}
}#define EPSILON 0.01f
bool validate_result(std::vector<float> vout, std::vector<float> vgold, const unsigned int SIZE) {bool bValid = true;for (unsigned int i = 0; i < SIZE; i++) {float delta = (float)fabs(vgold[i] - vout[i]);if (delta > EPSILON) {std::cout << "Validation failed on i=" << i << ": vout[i] = " << vout[i] << ", but " << vgold[i]<< " was expected\n";bValid = false;}}return bValid;
}static int run(const ISPCRTDeviceType device_type, const unsigned int SIZE) {std::vector<float> vin(SIZE);std::vector<float> vout(SIZE);std::vector<float> vgold(SIZE);ispcrt::Device device(device_type);// Setup input arrayispcrt::Array<float> vin_dev(device, vin);// Setup output arrayispcrt::Array<float> vout_dev(device, vout);// Setup parameters structureParameters p;p.vin = vin_dev.devicePtr();p.vout = vout_dev.devicePtr();p.count = SIZE;auto p_dev = ispcrt::Array<Parameters>(device, p);// Create module and kernel to executeispcrt::Module module(device, "xe_simple");ispcrt::Kernel kernel(device, module, "simple_ispc");// Create task queue and execute kernelispcrt::TaskQueue queue(device);std::generate(vin.begin(), vin.end(), [i = 0]() mutable { return i++; });// Calculate gold resultsimple_CPU_validation(vin, vgold, SIZE);// ispcrt::Array objects which used as inputs for ISPC kernel should be// explicitly copied to device from hostqueue.copyToDevice(p_dev);queue.copyToDevice(vin_dev);// Launch the kernel on the device using 1 threadauto res = queue.launch(kernel, p_dev, 1);// ispcrt::Array objects which used as outputs of ISPC kernel should be// explicitly copied to host from devicequeue.copyToHost(vout_dev);// Execute queue and syncqueue.sync();double time = -1.0;if (res.valid()) {time = res.time() * 1e-6;}std::cout << time << std::endl;std::cout << "Executed on: " << device_type << '\n' << std::setprecision(6) << std::fixed;// Check and print resultbool bValid = validate_result(vout, vgold, SIZE);if (bValid) {for (int i = 0; i < SIZE; i++) {std::cout << i << ": simple(" << vin[i] << ") = " << vout[i] << '\n';}return 0;}return -1;
}void usage(const char *p) {std::cout << "Usage:\n";std::cout << p << " --cpu | --gpu | -h\n";
}int main(int argc, char *argv[]) {std::ios_base::fmtflags f(std::cout.flags());constexpr unsigned int SIZE = 16;// Run on CPU by defaultISPCRTDeviceType device_type = ISPCRT_DEVICE_TYPE_AUTO;if (argc > 2 || (argc == 2 && std::string(argv[1]) == "-h")) {usage(argv[0]);return -1;}if (argc == 2) {std::string dev_param = argv[1];if (dev_param == "--cpu") {device_type = ISPCRT_DEVICE_TYPE_CPU;} else if (dev_param == "--gpu") {device_type = ISPCRT_DEVICE_TYPE_GPU;} else {usage(argv[0]);return -1;}}int success = run(device_type, SIZE);std::cout.flags(f);return success;
}

simple.ispc的内容如下:

struct Parameters {float *vin;float *vout;int    count;
};task void simple_ispc(void *uniform _p) {Parameters *uniform p = (Parameters * uniform) _p;foreach (index = 0 ... p->count) {// Load the appropriate input value for this program instance.float v = p->vin[index];// Do an arbitrary little computation, but at least make the// computation dependent on the value being processedif (v < 3.)v = v * v;elsev = sqrt(v);// And write the result to the output array.p->vout[index] = v;}
}#include "ispcrt.isph"
DEFINE_CPU_ENTRY_POINT(simple_ispc)

编译流程

编译需要用到 CMake 和 C/C++ 编译器。在 Windows 上就是使用 CMake 和 Visual Studio,Linux 上使用 CMake 和 Clang 或 GCC 就行。

ISPC 分发中包含了一些很有用的 CMake 函数,可以大大降低我们编译所需的工作量。但是需要注意本文中使用 CMake 函数的只能在 v1.18.1 之前的版本使用,后面版本中,相关函数出现了大的变化,但是官方并未对这些函数进行介绍。由于本人也没有 11-13 代核显或者 Intel 独显,所以无法进行尝试,未来如果进行了研究会在这里贴上链接。

建议别想不开非要自己用命令一条条编译。因为各种库都是要手动设置的,Linux 上还好,Windows 上由于库的位置,几乎全是绝对地址,而且cl.exe对有些库的引用有问题,需要设置的太多,这就导致编译所需的命令都超级长,手动编译确实不太方便。

在项目根目录下新建一个CMakeLists.txt,输入以下内容:

cmake_minimum_required(VERSION 3.14)project(simple)
find_package(ispcrt REQUIRED)
add_executable(host_simple simple.cpp)
add_ispc_kernel(xe_simple simple.ispc "")
target_link_libraries(host_simple PRIVATE ispcrt::ispcrt)

由于计算需要交给 GPU 执行,所以操作 CPU 执行的代码加上host_前缀,交给 GPU 的任务就加上xe_前缀进行区分(Host 和 Device 的概念在 GPU 中还是非常常见的,如果你感兴趣)。

新版本的 ISPC 对新的核显架构使用了新的 CMake 函数,你可以在 ISPC 分发目录中的lib/ispcrt/ispc.cmake中看到。

然后就可以开始构建编译了。

按照惯例,新建一个build,在其中构建项目:

mkdir build
cd build
cmake ..

Linux

Linux 的话直接用make即可。

Windows

如果是在 Windows 上,这里会出现一个 Visual Studio 项目,我们点击.sln,然后生成解决方案。但是需要注意一个事情:不知道为什么,我在尝试的时候,有些情况下.sqv等一些文件会生成在build目录下,而不是Debug或者Release这些生成目录下(生成设置没有问题)。.sqv是关键,前文提到过这是程序与 ISPCRT 的桥梁。

解决方案有两种:

  1. 完成将.sqv后手动拖拽到生成目录下。这个方案对于简单的项目(比如说这个示例项目);
  2. 直接强制将其生成到.sln所在目录(也就是build目录下)。

如果使用第二种方法,需要在``的中间加入以下语句来设置生成环境(打开项目的时候 Visual Studio 会告诉你发生了修改):

SET( CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG "${OUTPUT_DIRECTORY}")
SET( CMAKE_RUNTIME_OUTPUT_DIRECTORY_RELEASE "${OUTPUT_DIRECTORY}")
SET( CMAKE_LIBRARY_OUTPUT_DIRECTORY_DEBUG "${OUTPUT_DIRECTORY}")
SET( CMAKE_LIBRARY_OUTPUT_DIRECTORY_RELEASE "${OUTPUT_DIRECTORY}")
SET( CMAKE_ARCHIVE_OUTPUT_DIRECTORY_DEBUG "${OUTPUT_DIRECTORY}")
SET( CMAKE_ARCHIVE_OUTPUT_DIRECTORY_RELEASE "${OUTPUT_DIRECTORY}")

这样我们就可以直接运行了(也不用切换工作目录)。

运行

这个程序既可以在 CPU 上 运行,也可以在 GPU 上运行(默认为 CPU)。

默认无选项(CPU):
请添加图片描述

GPU:

请添加图片描述

希望能帮到有需要的人~

参考资料

Intel® ISPC for Xe

cmake RUNTIME_OUTPUT_DIRECTORY on Windows - stack overflow

这篇关于如何通过ISPC使用Xe(核显)进行计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/611583

相关文章

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND

C# $字符串插值的使用

《C#$字符串插值的使用》本文介绍了C#中的字符串插值功能,详细介绍了使用$符号的实现方式,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录$ 字符使用方式创建内插字符串包含不同的数据类型控制内插表达式的格式控制内插表达式的对齐方式内插表达式中使用转义序列内插表达式中使用