学习笔记:在华为昇腾NPU上进行深度学习项目【未完待续】

2024-01-16 06:12

本文主要是介绍学习笔记:在华为昇腾NPU上进行深度学习项目【未完待续】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在NPU上做深度学习算法

  • 场景和功能说明
  • 系统信息查询
    • 1、场景一:非NPU上训练的模型推理
      • 1.1 执行方案
        • 学习案例
      • 1.2 CPU/GPU训练的模型转.ONNX模型
      • 1.3 onnx转om
      • 1.4 om推理

昇腾社区链接: 昇腾社区-官网丨昇腾万里 让智能无所不及

场景和功能说明

  • 第一种:在cpu或gpu上训练的模型,但要在NPU上执行模型推理;
  • 第二种:在NPU上同步训练、推理。

系统信息查询

中括号里的为查询结果示例。
– 查看系统架构:uname -a [aarch64,也称arm64]
– 查看操作系统版本:lsb_release -a [Ubuntu 22.04.3 LTS]
– 查看npu芯片型号:npu-smi info [Ascend310B4]
– 查看npu id:npu-smi info -l
– 查看Atlas产品型号:npu-smi info -t product -i <npu id> [Atlas 200I A2]

1、场景一:非NPU上训练的模型推理

此种使用场景下,cpu或gpu上训练的模型无法直接在nup上执行推理,需要先把训练好的模型转换成.om离线模型,才可以在NPU上执行后续的推理。

1.1 执行方案

step1:在已安装CANN开发环境的机器上,把cpu或gpu上训练的模型转换成.onnx格式 或 pd格式
step2:在安装CANN运行环境的机器上,把onnx格式转om格式。
对应CANN开发环境运行环境的区别、安装方法见官方文档:CANN软件安装

学习案例

① 官方gitee项目-支持tensorflow、pytorch的模型转换 这里已经集成了多种开源模型从初始模型 —> onnx模型 —> om模型转换操作步骤对应代码

  • 第一阶段:模型转onnx需要写代码完成;
  • 第二阶段:.onnx转.om使用atc命令完成,无须写代码。

② 仅onnx模型 —> om模型的转换案例:昇腾社区简单ATC转换案例
③ om模型的推理应用案例 这里的快速链接是昇腾社区下pytorch的应用案例,昇腾社区也集成了其他训练框架的应用案例,可自行查看。
④ 其他网友的分享:[推理部署]🌔ONNX推理加速技术文档-杂记

1.2 CPU/GPU训练的模型转.ONNX模型

以下是基于 bert_base_chinese预训练模型转onnx 改写的转换代码:

  • 源文件:基于bert_base_chinese模型微调后的.pt模型文件
  • 目标:把.pt转换成.onnx
import torch
import onnx
import numpy as np
import onnxruntime
from init.init_config import ModelConfig'''
1、pth文件转onnx:pytorch框架中集成了onnx模块,属于官方支持,onnx也覆盖了pytorch框架中的大部分算子。因此将pth模型文件转换为onnx文件非常简单。参考:https://zhuanlan.zhihu.com/p/524023964?utm_id=0
2、.pth转.onnx可以在任意机器上执行,只要有python并安装了对应依赖包即可,既可以是普通windows x86_64 gpu/cpu,也可以是linux Ascend310B4(昇腾 310B4 npu卡)
3、本文件中:
① 使用的是“基于bert-base-chinese微调的模型”,微调时的输入样本只有一个序列,所以训练时把token_type_ids也省略了;
② 和原始bert-base-chinese预训练模型input_shape=(batch_size,max_len)不同,微调训练使用的input_shape=(src_len,batch_size), attention_mask_shape=(batch_size,src_len), src_len是固定的512。
注意:Atlas 200/500 A2推理产品不支持动态Shape输入(设置Shape范围)。 详见官方文档 https://www.hiascend.com/document/detail/zh/canncommercial/70RC1/inferapplicationdev/aclpythondevg/aclpythondevg_0060.html
'''model_path = 'E:\\opencode\\13-02-BertWithPretrained-main\\cache1\\ner_model_epoch1_steps1000.pt'  # 微调后的模型文件
onnx_path = "./ner_model_bert.onnx"  # 定义onnx模型保存地址。固定max_len=512
# 注意token_id的shape=(src_len, batch_size)
input_shape = (512, 1)# todo 这里和原始模型在CPU或GPU上的加载方式保持一样。这里代码省略。。。。
model_config = ModelConfig()def load_torch_model():invoice_model = model_config.model# 在导出模型之前必须调用 model.eval() 或 model.train(False),因为这会将模型设置为“推理模式”。 这是必需的,因为 dropout 或 batchnorm 等运算符在推理和训练模式下的行为有所不同。invoice_model.eval()return invoice_modeldef onnx_model_predict(onnx_path, dummy_input):# 创建会话,用于推理'''这里 onnxruntime.InferenceSession(model_path) 就是加载模型的步骤,ONNX Runtime 会在内部执行模型的验证。如果模型有问题,ONNX Runtime 将在加载过程中引发异常。因此,在使用 ONNX Runtime 进行推理时,你通常不需要显式地调用 onnx.load(onnx_path) 和 onnx.checker.check_model(onnx_model)。 # 模型加载onnx_model = onnx.load(onnx_path)onnx.checker.check_model(onnx_model)'''ort_session = onnxruntime.InferenceSession(onnx_path)# 获取模型的输入"input"inputs = ort_session.get_inputs()# bert基础模型设置:定义模型的输入{"input":numpys数组-不是tensor}和输出 ["output"]padding_mask = np.transpose((dummy_input == 0))# 省略token_type_ids的写法,和源模型转onnx时的input保持一致!ort_inputs = {inputs[0].name: dummy_input,inputs[1].name: padding_mask}outputs = ort_session.get_outputs()output_name = [outputs[0].name]# 模型推理ort_outs = ort_session.run(output_name, ort_inputs)return ort_outsdef export_config(token_ids, padding_mask, keep=True):'''使用的是bert-base-chinese模型,常规输入包含input_ids、attention_mask、token_type_ids:param token_ids: 句子输入编码:param padding_mask: 掩码:param keep: 是否保留token_type_ids:return:'''output_names = ["out"]if keep:input_data = (token_ids,padding_mask,token_ids)input_names = ["input_ids", "attention_mask", "token_type_ids"]dynamic_axes = {"input_ids": {0: "B"},"attention_mask": {0: "B"},"token_type_ids": {0: "B"},"out": {0: "B"}}else:input_data = (token_ids,padding_mask)input_names = ["input_ids", "attention_mask"]dynamic_axes = {"input_ids": {0: "B"},"attention_mask": {0: "B"},"out": {0: "B"}}return input_data, input_names, output_names, dynamic_axesdef torch2onnx(dummy_input):torch_model = load_torch_model(model_path)token_ids = torch.from_numpy(dummy_input)  # numpy.ndarray转torch.tensor# bert基础模型设置padding_mask = (token_ids == 0).transpose(0, 1)# build data# 因为这里使用的是“基于bert-base-chinese微调的模型”,微调时的输入样本只有一个序列,所以token_type_ids可省略input_data, input_names, output_names, dynamic_axes = export_config(token_ids, padding_mask, keep=False)# onnx模型导出:verbose--是否打印日志torch.onnx.export(torch_model, input_data, onnx_path,verbose=True,opset_version=11,dynamic_axes=dynamic_axes,input_names=input_names,output_names=output_names)# 测试模型是否合理# 模型加载onnx_model = onnx.load(onnx_path)# 检查onnx模型转换是否合理onnx.checker.check_model(onnx_model)def onnx_predict(dummy_input, onnx_path):# 1、原始torch模型加载和推理origin_model = load_torch_model(model_path)input_sample_tensor = dummy_inputif isinstance(dummy_input, np.ndarray):input_sample_tensor = torch.from_numpy(dummy_input).to(device)torch_out = origin_model(input_sample_tensor).detach().numpy()# 2、onnx模型加载和推理ort_outs = onnx_model_predict(onnx_path, dummy_input)# 3、结果对比# todo 使用numpy的测试工具,检查两个数组是否在给定的相对和绝对误差范围内相等。np.testing.assert_allclose是一个测试断言语句,如果检查失败(即输出不在指定误差范围内),将引发 AssertionError,从而提示测试失败。#  (1)检查形状:确保 torch_out 和 ort_outs[0] 的形状相同。 (2)检查数值相等性: 对每个对应的元素,检查其数值是否在相对误差 (rtol) 和绝对误差 (atol) 允许的范围内。np.testing.assert_allclose(torch_out, ort_outs[0], rtol=1e-01, atol=1e-5)print(torch_out[:10])print(ort_outs[0][:10])print("convert success")if __name__ == "__main__":# #(方案1)随机型:在测试转换前后的误差时,需要传递同一输入值# input_sample = np.random.randn(*input_shape).astype(np.float32)# # (方案2)固定值型device = torch.device("cuda" if torch.cuda.is_available() else "cpu")dummy_input = np.ones(input_shape).astype(np.long)# 普通模型转onnxtorch2onnx(dummy_input)# 简单测试转换前后的精度差异onnx_predict(dummy_input, onnx_path)

1.3 onnx转om

具体指令参考 昇腾社区简单ATC转换案例

1.4 om推理

这篇关于学习笔记:在华为昇腾NPU上进行深度学习项目【未完待续】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/611559

相关文章

springboot项目中整合高德地图的实践

《springboot项目中整合高德地图的实践》:本文主要介绍springboot项目中整合高德地图的实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一:高德开放平台的使用二:创建数据库(我是用的是mysql)三:Springboot所需的依赖(根据你的需求再

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

华为鸿蒙HarmonyOS 5.1官宣7月开启升级! 首批支持名单公布

《华为鸿蒙HarmonyOS5.1官宣7月开启升级!首批支持名单公布》在刚刚结束的华为Pura80系列及全场景新品发布会上,除了众多新品的发布,还有一个消息也点燃了所有鸿蒙用户的期待,那就是Ha... 在今日的华为 Pura 80 系列及全场景新品发布会上,华为宣布鸿蒙 HarmonyOS 5.1 将于 7

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

Linux使用scp进行远程目录文件复制的详细步骤和示例

《Linux使用scp进行远程目录文件复制的详细步骤和示例》在Linux系统中,scp(安全复制协议)是一个使用SSH(安全外壳协议)进行文件和目录安全传输的命令,它允许在远程主机之间复制文件和目录,... 目录1. 什么是scp?2. 语法3. 示例示例 1: 复制本地目录到远程主机示例 2: 复制远程主

springboot项目中使用JOSN解析库的方法

《springboot项目中使用JOSN解析库的方法》JSON,全程是JavaScriptObjectNotation,是一种轻量级的数据交换格式,本文给大家介绍springboot项目中使用JOSN... 目录一、jsON解析简介二、Spring Boot项目中使用JSON解析1、pom.XML文件引入依

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio