【VK Cup 2016 - Round 1 (Div 2 Edition)C】【构造】Bear and Forgotten Tree 3 构造一棵树直径为d且点1的深度为h

本文主要是介绍【VK Cup 2016 - Round 1 (Div 2 Edition)C】【构造】Bear and Forgotten Tree 3 构造一棵树直径为d且点1的深度为h,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Bear and Forgotten Tree 3
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

A tree is a connected undirected graph consisting of n vertices and n  -  1 edges. Vertices are numbered 1 through n.

Limak is a little polar bear and Radewoosh is his evil enemy. Limak once had a tree but Radewoosh stolen it. Bear is very sad now because he doesn't remember much about the tree — he can tell you only three values nd and h:

  • The tree had exactly n vertices.
  • The tree had diameter d. In other words, d was the biggest distance between two vertices.
  • Limak also remembers that he once rooted the tree in vertex 1 and after that its height was h. In other words, h was the biggest distance between vertex 1 and some other vertex.

The distance between two vertices of the tree is the number of edges on the simple path between them.

Help Limak to restore his tree. Check whether there exists a tree satisfying the given conditions. Find any such tree and print its edges in any order. It's also possible that Limak made a mistake and there is no suitable tree – in this case print "-1".

Input

The first line contains three integers nd and h (2 ≤ n ≤ 100 000, 1 ≤ h ≤ d ≤ n - 1) — the number of vertices, diameter, and height after rooting in vertex 1, respectively.

Output

If there is no tree matching what Limak remembers, print the only line with "-1" (without the quotes).

Otherwise, describe any tree matching Limak's description. Print n - 1 lines, each with two space-separated integers – indices of vertices connected by an edge. If there are many valid trees, print any of them. You can print edges in any order.

Examples
input
5 3 2
output
1 2
1 3
3 4
3 5
input
8 5 2
output
-1
input
8 4 2
output
4 8
5 7
2 3
8 1
2 1
5 6
1 5
Note

Below you can see trees printed to the output in the first sample and the third sample.


#include<stdio.h>
#include<iostream>
#include<string.h>
#include<string>
#include<ctype.h>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); }
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b>a)a = b; }
template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b<a)a = b; }
const int N = 1e5 + 10, M = 0, Z = 1e9 + 7, ms63 = 0x3f3f3f3f;
int n, h, d;
int a[N];
bool solve()
{if (h < (d + 1) / 2)return 0;	//必须有h>=(d+1)/2if (h > d)return 0;				//必须有h<=dif (n > 2 && d == 1)return 0;	//当n>2时必有d>2for (int i = 1; i <= d + 1; ++i)a[i] = i;swap(a[1], a[1 + h]);for (int i = 1; i <= d; ++i)printf("%d %d\n", a[i], a[i + 1]);int p = 1 + d / 2;for (int i = d + 2; i <= n; ++i)printf("%d %d\n", a[p], i);return 1;
}
int main()
{while (~scanf("%d%d%d", &n, &d, &h)){if (!solve())puts("-1");}return 0;
}
/*
【题意】
让你构造一棵树,使其满足——
1,有n(1e5)个节点
2,树的直径为d
3,距离节点1最远的点的距离为h【类型】
贪心 构造【分析】
我们直接从贪心的角度入手做构造就好啦。
只要d>=h>=(d+1)/2即可成功构造
唯一的反例是d==h==1且点数超过2的时候,这个特判一下即可。构造方法:
首先,我们构造一条长度为d的链,作为这棵树的直径
然后,我们使得节点1这这条链上,距离一端的位置恰好为h
至于剩下的节点,全部连在直径中间的位置即可。【时间复杂度&&优化】
O(n)*/


这篇关于【VK Cup 2016 - Round 1 (Div 2 Edition)C】【构造】Bear and Forgotten Tree 3 构造一棵树直径为d且点1的深度为h的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/610380

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1