2008-10-22 09:13 AES128加密算法与实现2

2024-01-15 16:18

本文主要是介绍2008-10-22 09:13 AES128加密算法与实现2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

/*F*****************************************************************************
* PARAMS:   state       4*4的状态表首指针
*
* RETURN:   None
*-------------------------------------------------------------------------------
* PURPOSE: 列混合操作。事实上是一种替代操作,用 State 字节列的值进行数学域加
*           和域乘的结果代替每个字节。
*           包括S-box变换,行变换,列变换
*-------------------------------------------------------------------------------
* EXAMPLE:
*-------------------------------------------------------------------------------
* NOTE:     MixColumns 使用特殊的加法和乘法,是基于近代数学的域论的有限域GF(28).
*           GF(28)由一组从 0x00 到 0xff 的256个值组成,加上加法和乘法。 GF代表
*           伽罗瓦域,以发明这一理论的数学家的名字命名。GF(28) 的一个特性是一个
*           加法或乘法的操作的结果必须是在{0x00 ... 0xff}这组数中。虽然域论是相
*           当深奥的,但GF(28)加法的最终结果却很简单。GF(28) 加法就是异或(XOR)
*           操作。
*
*         GF(28)的乘法有点繁难。AES的加密和解密例程需要知道怎样只用七个常量
*           0x01、0x02、0x03、0x09、0x0b、0x0d 和 0x0e 来相乘。只是针对这七种特殊
*           情况进行说明。
*
*         在GF(28)中用0x01的乘法是特殊的;它相当于普通算术中用1做乘法并且结果
*           也同样—任何值乘0x01等于其自身。
*
*         用0x02做乘法。和加法的情况相同,理论是深奥的,但最终结果十分简单。只要
*           被乘的值小于0x80,这时乘法的结果就是该值左移1比特位。如果被乘的值大于
*           或等于0x80,这时乘法的结果就是左移1比特位再用值0x1b异或。它防止了“域溢
*           出”并保持乘法的乘积在范围以内。
*
*           清楚在GF(28)中用0x02建立了加法和乘法,就可以用任何常量去定义乘法。用
*           0x03做乘法时,你可以将0x03分解为2的幂之和。为了用0x03乘以任意字节b,
*           因为 0x03 = 0x02 + 0x01,因此:
*               b * 0x03 = b * (0x02 + 0x01) = (b * 0x02) + (b * 0x01)
*******************************************************************************/
static void MixSubColumns(AES_U8 *state)
{
AES_U8 newstate[4 * Nc];    //用于缓存新的"state"数组

    // mixing column 0
    newstate[0] = Xtime2Sbox[state[0]] ^ Xtime3Sbox[state[5]] ^ Sbox[state[10]] ^ Sbox[state[15]];
    newstate[1] = Sbox[state[0]] ^ Xtime2Sbox[state[5]] ^ Xtime3Sbox[state[10]] ^ Sbox[state[15]];
    newstate[2] = Sbox[state[0]] ^ Sbox[state[5]] ^ Xtime2Sbox[state[10]] ^ Xtime3Sbox[state[15]];
    newstate[3] = Xtime3Sbox[state[0]] ^ Sbox[state[5]] ^ Sbox[state[10]] ^ Xtime2Sbox[state[15]];

    // mixing column 1
    newstate[4] = Xtime2Sbox[state[4]] ^ Xtime3Sbox[state[9]] ^ Sbox[state[14]] ^ Sbox[state[3]];
    newstate[5] = Sbox[state[4]] ^ Xtime2Sbox[state[9]] ^ Xtime3Sbox[state[14]] ^ Sbox[state[3]];
    newstate[6] = Sbox[state[4]] ^ Sbox[state[9]] ^ Xtime2Sbox[state[14]] ^ Xtime3Sbox[state[3]];
    newstate[7] = Xtime3Sbox[state[4]] ^ Sbox[state[9]] ^ Sbox[state[14]] ^ Xtime2Sbox[state[3]];

    // mixing column 2
    newstate[8] = Xtime2Sbox[state[8]] ^ Xtime3Sbox[state[13]] ^ Sbox[state[2]] ^ Sbox[state[7]];
    newstate[9] = Sbox[state[8]] ^ Xtime2Sbox[state[13]] ^ Xtime3Sbox[state[2]] ^ Sbox[state[7]];
    newstate[10] = Sbox[state[8]] ^ Sbox[state[13]] ^ Xtime2Sbox[state[2]] ^ Xtime3Sbox[state[7]];
    newstate[11] = Xtime3Sbox[state[8]] ^ Sbox[state[13]] ^ Sbox[state[2]] ^ Xtime2Sbox[state[7]];

    // mixing column 3
newstate[12] = Xtime2Sbox[state[12]] ^ Xtime3Sbox[state[1]] ^ Sbox[state[6]] ^ Sbox[state[11]];
    newstate[13] = Sbox[state[12]] ^ Xtime2Sbox[state[1]] ^ Xtime3Sbox[state[6]] ^ Sbox[state[11]];
    newstate[14] = Sbox[state[12]] ^ Sbox[state[1]] ^ Xtime2Sbox[state[6]] ^ Xtime3Sbox[state[11]];
    newstate[15] = Xtime3Sbox[state[12]] ^ Sbox[state[1]] ^ Sbox[state[6]] ^ Xtime2Sbox[state[11]];

    memcpy (state, newstate, sizeof(newstate));
}


/*F*****************************************************************************
* PARAMS:   state       4*4的状态表首指针
*
* RETURN:   None
*-------------------------------------------------------------------------------
* PURPOSE: 反列混合运算
*           包括
*-------------------------------------------------------------------------------
* EXAMPLE:
*-------------------------------------------------------------------------------
* NOTE:    
*******************************************************************************/
static void InvMixSubColumns(AES_U8 *state)
{
AES_U8 newstate[4 * Nc];   //用于缓存新的"state"数组
AES_U16 i;                

    // restore column 0
    newstate[0] = XtimeE[state[0]] ^ XtimeB[state[1]] ^ XtimeD[state[2]] ^ Xtime9[state[3]];
    newstate[5] = Xtime9[state[0]] ^ XtimeE[state[1]] ^ XtimeB[state[2]] ^ XtimeD[state[3]];
    newstate[10] = XtimeD[state[0]] ^ Xtime9[state[1]] ^ XtimeE[state[2]] ^ XtimeB[state[3]];
    newstate[15] = XtimeB[state[0]] ^ XtimeD[state[1]] ^ Xtime9[state[2]] ^ XtimeE[state[3]];

    // restore column 1
    newstate[4] = XtimeE[state[4]] ^ XtimeB[state[5]] ^ XtimeD[state[6]] ^ Xtime9[state[7]];
    newstate[9] = Xtime9[state[4]] ^ XtimeE[state[5]] ^ XtimeB[state[6]] ^ XtimeD[state[7]];
    newstate[14] = XtimeD[state[4]] ^ Xtime9[state[5]] ^ XtimeE[state[6]] ^ XtimeB[state[7]];
    newstate[3] = XtimeB[state[4]] ^ XtimeD[state[5]] ^ Xtime9[state[6]] ^ XtimeE[state[7]];

    // restore column 2
    newstate[8] = XtimeE[state[8]] ^ XtimeB[state[9]] ^ XtimeD[state[10]] ^ Xtime9[state[11]];
    newstate[13] = Xtime9[state[8]] ^ XtimeE[state[9]] ^ XtimeB[state[10]] ^ XtimeD[state[11]];
    newstate[2] = XtimeD[state[8]] ^ Xtime9[state[9]] ^ XtimeE[state[10]] ^ XtimeB[state[11]];
    newstate[7] = XtimeB[state[8]] ^ XtimeD[state[9]] ^ Xtime9[state[10]] ^ XtimeE[state[11]];

    // restore column 3
    newstate[12] = XtimeE[state[12]] ^ XtimeB[state[13]] ^ XtimeD[state[14]] ^ Xtime9[state[15]];
    newstate[1] = Xtime9[state[12]] ^ XtimeE[state[13]] ^ XtimeB[state[14]] ^ XtimeD[state[15]];
    newstate[6] = XtimeD[state[12]] ^ Xtime9[state[13]] ^ XtimeE[state[14]] ^ XtimeB[state[15]];
    newstate[11] = XtimeB[state[12]] ^ XtimeD[state[13]] ^ Xtime9[state[14]] ^ XtimeE[state[15]];

    for (i=0; i<(4 * Nc); i++)
    {
        state[i] = InvSbox[newstate[i]];
    }
}


/*F*****************************************************************************
* PARAMS:   state       4*4的状态表首指针
*           key         密钥表首指针
* RETURN:   None
*-------------------------------------------------------------------------------
* PURPOSE: 轮密钥加操作
*-------------------------------------------------------------------------------
* EXAMPLE:
*-------------------------------------------------------------------------------
* NOTE:     在加密和解密过程中均用到
*******************************************************************************/
static void AddRoundKey(AES_U8 *state, AES_U8 *key)
{
AES_U16 idx;    //索引

    for (idx=0; idx<4; idx++)
    {
        state[idx] ^= key[idx];
    }
}


/*F*****************************************************************************
* PARAMS:   key         密钥表首指针
*           expKey      扩展密钥表首指针
* RETURN:   None
*-------------------------------------------------------------------------------
* PURPOSE: 扩展密钥加操作,相当于初始化AES算法
*-------------------------------------------------------------------------------
* EXAMPLE:
*-------------------------------------------------------------------------------
* NOTE:     在加密和解密过程中均用到,每轮扩展Nk字节
*******************************************************************************/
void AES_ExpandKey(AES_U8 *key, AES_U8 *expKey)
{
AES_U8 tmp0, tmp1, tmp2, tmp3, tmp4;
AES_U16 idx;    //索引

    for (idx=0; idx<Nk; idx++) //把数组key中的每个元素复制到数组expKey相对应中的位置,Nk=4
    {
        expKey[4*idx+0] = key[4 * idx + 0];
        expKey[4*idx+1] = key[4 * idx + 1];
        expKey[4*idx+2] = key[4 * idx + 2];
        expKey[4*idx+3] = key[4 * idx + 3];
    }

    for (idx=Nk; idx<(Nc * (Nr + 1)); idx++) //
    {
        tmp0 = expKey[4*idx - 4];
        tmp1 = expKey[4*idx - 3];
        tmp2 = expKey[4*idx - 2];
        tmp3 = expKey[4*idx - 1];
       
        if ( !(idx % Nk) )
        {
            tmp4 = tmp3;
            tmp3 = Sbox[tmp0];
            tmp0 = Sbox[tmp1] ^ Rcon[idx/Nk];
            tmp1 = Sbox[tmp2];
            tmp2 = Sbox[tmp4];
        } //End of if

        //convert from longs to bytes
        expKey[4*idx+0] = expKey[4*idx - 4*Nk + 0] ^ tmp0;
        expKey[4*idx+1] = expKey[4*idx - 4*Nk + 1] ^ tmp1;
        expKey[4*idx+2] = expKey[4*idx - 4*Nk + 2] ^ tmp2;
        expKey[4*idx+3] = expKey[4*idx - 4*Nk + 3] ^ tmp3;
    } //End of for
}


/*F*****************************************************************************
* PARAMS:   in          输入缓冲区指针
*           expKey      扩展密钥表首指针
*           out         输出缓冲区指针
* RETURN:   None
*-------------------------------------------------------------------------------
* PURPOSE: 128Bit加密函数
*-------------------------------------------------------------------------------
* EXAMPLE:
*-------------------------------------------------------------------------------
* NOTE:     每次仅限于128Bit数据块
*******************************************************************************/
void AES_Encrypt(AES_U8 *in, AES_U8 *expKey, AES_U8 *out)
{
AES_U8 state[Nc * 4]; //state数组,用于数据分组
AES_U16 round;          //加密轮数计数器
AES_U16 idx;            //索引

    //128位数据分组,把输入缓冲区中的数据放到4*4state数组中
    for (idx=0; idx<Nc; idx++ )
    {
        state[4*idx+0] = *in++;
        state[4*idx+1] = *in++;
        state[4*idx+2] = *in++;
        state[4*idx+3] = *in++;
    }

    //与扩展密钥进行“异或”操作
    AddRoundKey ((AES_U8 *)state, (AES_U8 *)expKey);

    //Nr轮加密操作
    for (round=1; round<(Nr + 1); round++)
    {
        if (round < Nr)
        {
            MixSubColumns(state);   //包含S-box变换,行变换,列变换
        }
        else
        {
            ShiftRows (state);      //S-box变换,行变换,最后一轮不进行列变换
        } //End of if
       
        //与扩展密钥进行“异或”操作
        AddRoundKey ((AES_U8 *)state, (AES_U8 *)expKey + round * Nc);
    } //End of for

    //输出128位加密后的数据
    for (idx=0; idx<Nc; idx++)
    {
        *out++ = state[4*idx+0];
        *out++ = state[4*idx+1];
        *out++ = state[4*idx+2];
        *out++ = state[4*idx+3];
    }
}


/*F*****************************************************************************
* PARAMS:   in          输入缓冲区指针
*           expKey      扩展密钥表首指针
*           out         输出缓冲区指针
* RETURN:   None
*-------------------------------------------------------------------------------
* PURPOSE: 128Bit解密函数
*-------------------------------------------------------------------------------
* EXAMPLE:
*-------------------------------------------------------------------------------
* NOTE:     每次仅限于128Bit数据块
*******************************************************************************/
void AES_Decrypt(AES_U8 *in, AES_U8 *expKey, AES_U8 *out)
{
AES_U8 state[Nc * 4]; //state数组,用于加密数据分组
AES_U16 round;          //加密轮数计数器
AES_U16 idx;            //索引

    //128位加密数据分组
    for (idx=0; idx<Nc; idx++)
    {
        state[4*idx+0] = *in++;
        state[4*idx+1] = *in++;
        state[4*idx+2] = *in++;
        state[4*idx+3] = *in++;
    }

    //与扩展密钥进行“异或”操作
    AddRoundKey ((AES_U8 *)state, (AES_U8 *)expKey + Nr * Nc);
    round = Nr;

    //反S-box变换,反行变换
    InvShiftRows(state);

    while (round--)
    {
        //与扩展密钥进行“异或”操作
        AddRoundKey((AES_U8 *)state, (AES_U8 *)expKey + round * Nc);
       
        if (round)
        {
            //反S-box变换,反行变换,反列变换
            InvMixSubColumns (state);
        } //End of if
    } //End of while

    //输出128位解密数据
    for (idx=0; idx<Nc; idx++ )
    {
        *out++ = state[4*idx+0];
        *out++ = state[4*idx+1];
        *out++ = state[4*idx+2];
        *out++ = state[4*idx+3];
    }
}

这篇关于2008-10-22 09:13 AES128加密算法与实现2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/609475

相关文章

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont