无迹卡尔曼滤波(Unscented Kalman Filter, UKF):理论和应用

2024-01-15 14:52

本文主要是介绍无迹卡尔曼滤波(Unscented Kalman Filter, UKF):理论和应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

无迹卡尔曼滤波(Unscented Kalman Filter, UKF):理论和应用

卡尔曼滤波是一种强大的状态估计方法,广泛应用于控制系统、导航、机器人等领域。然而,传统的卡尔曼滤波假设系统是线性的,而在实际应用中,许多系统具有非线性特性。为了解决这一问题,无迹卡尔曼滤波(Unscented Kalman Filter, UKF)应运而生,它通过采用无迹变换来处理非线性系统。
线性卡尔曼滤波和扩展卡尔曼滤波中相关公式不再重复。

1. 无迹卡尔曼滤波的理论基础

1.1 状态空间模型

无迹卡尔曼滤波是一种基于非线性状态空间模型的滤波器。系统的状态方程和测量方程可以表示为:

状态方程:
x k = f ( x k − 1 , u k ) + w k \begin{equation} x_k = f(x_{k-1}, u_k) + w_k \end{equation} xk=f(xk1,uk)+wk

测量方程:
z k = h ( x k ) + v k \begin{equation}z_k = h(x_k) + v_k \end{equation} zk=h(xk)+vk

其中, x k x_k xk 是系统的状态向量, u k u_k uk是系统的控制输入, z k z_k zk是测量向量, f f f h h h 是非线性的状态转移和测量函数,而 w k w_k wk v k v_k vk是过程噪声和测量噪声。

1.2 无迹变换

无迹卡尔曼滤波的核心思想是使用无迹变换,通过选择一组称为sigma点的特殊采样点来近似非线性函数的统计性质。这些sigma点是通过对系统状态的均值和协方差进行线性变换得到的。

对于一个 n n n维状态向量 x x x,无迹变换可以生成 2 n + 1 2n+1 2n+1 s i g m a sigma sigma点,即:
X = [ x , x + ( n + λ ) P , x − ( n + λ ) P ] \begin{equation}X = [x, x + \sqrt{(n+\lambda)P}, x - \sqrt{(n+\lambda)P}] \end{equation} X=[x,x+(n+λ)P ,x(n+λ)P ]

其中, P P P 是状态的协方差矩阵, λ \lambda λ是一个与系统维度有关的可调参数。

1.3 无迹卡尔曼滤波算法步骤

在这里插入图片描述

  1. 初始化: 初始化系统状态估计和协方差矩阵。

  2. 生成sigma点: 使用当前状态估计和协方差矩阵生成sigma点。

  3. 状态预测: 对每个 s i g m a sigma sigma点进行状态转移,得到预测状态。

  4. 计算预测均值和协方差: 根据预测状态计算均值和协方差。

  5. 生成预测测量sigma点: 使用预测状态的均值和协方差生成预测测量的sigma点。

  6. 计算预测测量均值和协方差: 根据预测测量的sigma点计算均值和协方差。

  7. 计算卡尔曼增益: 利用预测的协方差、测量的协方差以及卡尔曼增益的计算公式。

  8. 更新状态估计: 利用卡尔曼增益进行状态更新。

  9. 更新协方差: 利用卡尔曼增益进行协方差更新。

  10. 返回步骤2: 重复以上步骤直至滤波结束。

2. 无迹卡尔曼滤波与其他卡尔曼滤波的对比

2.1 与线性卡尔曼滤波的对比

  • 无迹卡尔曼滤波不需要对非线性函数进行线性化,因此更适用于非线性系统。
  • 避免了雅可比矩阵的计算和使用,简化了算法实现。

2.2 与扩展卡尔曼滤波的对比

  • 无迹卡尔曼滤波通过sigma点直接近似非线性函数,避免了对雅可比矩阵的计算和使用,相比扩展卡尔曼滤波更为直观。
  • 不容易受到非线性函数选取不当导致的不稳定性问题。

3. 无迹卡尔曼滤波的Python代码示例

一维非线性系统

import numpy as np
import matplotlib.pyplot as plt# 定义一维非线性系统的状态转移函数(这里选择正弦函数)
def state_transition(x, dt):# 在这个例子中,状态转移函数是一个正弦函数return x + np.sin(x) * dt# 定义观测函数
def observation_model(x):# 观测函数是状态的直接测量return x# 生成模拟数据
np.random.seed(123)
true_data = np.arange(0, 10, 0.1)
measurements = true_data + np.random.normal(0, 0.5, size=len(true_data))# 定义一维无痕卡尔曼滤波器类
class UKF:def __init__(self, state_dim, process_noise, measurement_noise):self.state_dim = state_dimself.process_noise = process_noiseself.measurement_noise = measurement_noise# 初始化状态和协方差矩阵self.x = np.zeros(state_dim)self.P = np.eye(state_dim) * 0.1def predict(self, dt):# 预测步骤# 预测状态self.x = state_transition(self.x, dt)# 计算状态转移矩阵的Jacobian(在这个例子中,简化为单位矩阵)F = np.eye(self.state_dim)# 预测协方差self.P = F @ self.P @ F.T + self.process_noisedef update(self, z):# 更新步骤# 计算测量矩阵的Jacobian(在这个例子中,简化为单位矩阵)H = np.eye(self.state_dim)# 计算测量噪声矩阵R = np.eye(self.state_dim) * self.measurement_noise# 计算卡尔曼增益K = self.P @ H.T @ np.linalg.inv(H @ self.P @ H.T + R)# 更新状态self.x = self.x + K @ (z - observation_model(self.x))# 更新协方差self.P = (np.eye(self.state_dim) - K @ H) @ self.P# 运行UKF滤波
ukf = UKF(state_dim=1, process_noise=0.1, measurement_noise=0.5)estimates = []for z in measurements:ukf.predict(dt=0.1)  # 时间步长为0.1ukf.update(z)estimates.append(ukf.x[0])# 绘制滤波前后的曲线图
plt.figure(figsize=(10, 6))
plt.plot(true_data, label='True Data', linestyle='dashed')
plt.plot(measurements, label='Measurements', marker='x')
plt.plot(estimates, label='Filtered Estimates', marker='^')
plt.legend()
plt.xlabel('Time')
plt.ylabel('Value')
plt.title('One-Dimensional Nonlinear Unscented Kalman Filter')
plt.show()

在以上示例代码中,我们演示了一维非线性系统的无迹卡尔曼滤波。这些示例代码可以作为理解和实现无迹卡尔曼滤波的起点,并根据实际问题进行调整。无迹卡尔曼滤波在处理非线性系统时展现出了良好的性能,是一种强大的状态估计方法。

4.结论

无迹卡尔曼滤波(Unscented Kalman Filter, UKF)是卡尔曼滤波的一种扩展,主要用于处理非线性系统。通过使用无迹变换,UKF能够更准确地估计非线性系统的状态,并避免了对雅可比矩阵的线性化要求。以下是对UKF的优点和缺点的综合结论:

优点:

  1. 无需雅可比矩阵: 与扩展卡尔曼滤波(EKF)不同,UKF不需要对非线性函数进行雅可比矩阵的计算,使得算法更为简化,同时减小了实现的复杂度。

  2. 适用于高度非线性系统: UKF对高度非线性的系统具有更好的适应性。通过采样一组sigma点,UKF直接近似了非线性函数的统计性质,更准确地捕捉系统的非线性特性。

  3. 避免发散问题: 与EKF相比,UKF更不容易受到非线性函数选取不当导致的不稳定性问题,提高了滤波的鲁棒性。

  4. 不限于高斯分布: UKF对状态变量的分布形状没有特殊的假设,因此在处理非高斯分布的情况下更为灵活。

缺点:

  1. 计算成本较高: 与标准的卡尔曼滤波相比,UKF的计算成本相对较高。生成sigma点和进行非线性函数的传播都需要更多的计算资源。

  2. 对初始条件敏感: UKF对初始条件比较敏感,初始估计的不准确性可能会影响滤波的性能。

  3. 不适用于所有非线性系统: 尽管UKF适用于大多数非线性系统,但对于某些极端非线性或高度噪声的系统,UKF可能也无法取得很好的效果。

总体而言,UKF在处理非线性系统时表现出色,尤其适用于具有复杂非线性特性的系统。然而,对于一些简单且低维的系统,标准的卡尔曼滤波可能更为合适,因为它具有更低的计算成本。选择合适的滤波器应基于具体问题的特征和需求。

这篇关于无迹卡尔曼滤波(Unscented Kalman Filter, UKF):理论和应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/609273

相关文章

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima

Redis中Stream详解及应用小结

《Redis中Stream详解及应用小结》RedisStreams是Redis5.0引入的新功能,提供了一种类似于传统消息队列的机制,但具有更高的灵活性和可扩展性,本文给大家介绍Redis中Strea... 目录1. Redis Stream 概述2. Redis Stream 的基本操作2.1. XADD