Dreambooth Stable Diffusion始化训练环境(AutoDL)

2024-01-15 06:12

本文主要是介绍Dreambooth Stable Diffusion始化训练环境(AutoDL),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

以AutoDL为例

        以下代码源自:赛博华佗——秋叶:

        Akegarasu

环境选择

  1. Miniconda: Miniconda是一个轻量级的Conda环境管理系统。它包含了conda、Python和一些常用的包,以及能够管理安装其他包的能力。Miniconda是Anaconda的一个简化版,Anaconda是一个流行的Python科学计算发行版。

  2. conda3: 这指的是使用Conda环境管理系统,并且特指Python 3的版本。Conda是一个开源的包管理和环境管理系统,常用于科学计算领域,可以用来安装、运行和升级复杂的科学计算环境。

  3. 3.8(ubuntu20.04): 这里指的是使用Python 3.8版本,在Ubuntu 20.04操作系统上。Ubuntu 20.04是一个流行的Linux发行版,Python 3.8是这个版本的Python的一个较新的稳定版本。

  4. 11.3: 这个数字指的是NVIDIA CUDA的版本号,CUDA是NVIDIA开发的用于通用并行计算的编程架构,广泛用于深度学习和高性能计算任务。11.3是CUDA的一个具体版本号。

初始化脚本环境

        clone其项目后,首先利用 conda 创建 python 运行环境后再运行 install.sh

git clone https://github.com/Akegarasu/dreambooth-autodl.git
cd dreambooth-audodl
conda create -n diffusers python=3.10
conda init bash && source /root/.bashrc
conda activate diffusers
conda install ipykernel
ipython kernel install --user --name=diffusers
bash install.sh

        将项目文件夹移动到 /autodl-tmp 后打开 dreambooth-aki.ipynb 运行训练

import sys
import os# 本镜像专属
os.environ["PATH"] = f'/root/miniconda3/envs/diffusers/bin:{os.environ["PATH"]}'
os.environ["HF_HOME"] = ".cache"
DB_SCRIPT_WORK_PATH = os.getcwd() # "/root/autodl-tmp/dreambooth-aki"!python --version
%cd $DB_SCRIPT_WORK_PATHTRAINER = "train_dreambooth.py"
CONVERTER = "convert_v3.py"
BACK_CONVERTER = "back_convert.py"SRC_PATH = "./model-sd"
MODEL_NAME = "./model-hf"# 模型保存路径
OUTPUT_DIR = "./output"
!mkdir -p $OUTPUT_DIR

        这段代码是设置一个Jupyter笔记本的全局变量,主要用于准备环境以便于训练Stable Diffusion模型。代码执行的主要功能如下:

  1. 导入所需的Python库(sysos)。

  2. 设置环境变量:

    • "PATH":添加一个特定的路径到系统的PATH环境变量中,这个路径是针对一个特定的Python环境设置的,以确保可以访问所需的执行文件。
    • "HF_HOME":设置Hugging Face库的缓存目录。
  3. 获取当前工作目录的路径,并将其存储在变量DB_SCRIPT_WORK_PATH中。

  4. 执行系统命令来获取Python的版本信息,并切换到工作目录。

  5. 定义一些脚本和模型相关的变量:

    • TRAINER:用于训练模型的Python脚本文件名。
    • CONVERTER:用于转换模型格式的Python脚本文件名。
    • BACK_CONVERTER:用于将训练好的模型转换回原始格式的Python脚本文件名。
    • SRC_PATH:原始模型文件的路径。
    • MODEL_NAME:转换后的模型文件的保存路径。
  6. 定义模型输出目录OUTPUT_DIR,并创建该目录(如果它不存在的话)。

        这些步骤为接下来的模型训练和转换工作提供了必要的准备。它设置了环境变量、定义了关键文件路径和脚本名称,并确保了输出目录的存在。

    环境变量PATH

        环境变量PATH是操作系统用来查找可执行文件的目录列表。当你运行一个命令时,系统会在PATH中列出的目录里搜索该命令对应的可执行文件。

f'/root/miniconda3/envs/diffusers/bin:{os.environ["PATH"]}'

        这其中的冒号,其实是一个分隔符。。。。。。

        在PATH环境变量中,路径是按照从左到右的顺序进行搜索的。因此,冒号前面的路径(也就是在变量值的最开始的路径)会被优先搜索。如果在这些路径中找不到所需的可执行文件,系统会继续在冒号后面列出的路径中搜索,直到找到所需的可执行文件或者搜索完所有列出的路径。

        在这个特定的例子中,/root/miniconda3/envs/diffusers/bin被添加到了PATH的最前面,所以系统会首先在这个目录中寻找可执行文件。这种方法常用于确保使用特定环境或版本的程序,特别是在有多个版本的程序安装在系统上时。

os.environ["HF_HOME"] = ".cache"

  • os.environ:这是Python中的一个字典,它包含了当前shell环境的所有环境变量。通过修改这个字典,可以改变环境变量的值。

  • "HF_HOME":这是环境变量的名称。HF_HOME是由Hugging Face库使用的特定环境变量,通常用于指定Hugging Face相关文件(如模型缓存、配置文件等)的存储位置。

  • "= .cache":这将HF_HOME的值设置为.cache。这个值是一个相对路径,表示当前目录下的名为.cache的文件夹。

        将HF_HOME设置为.cache的效果是:当使用Hugging Face库(例如,加载模型、下载数据集等)时,它会将所有缓存的数据(如下载的预训练模型)保存到当前工作目录下的.cache文件夹中。这对于管理模型缓存非常有用,特别是在想要控制缓存位置或在多个项目之间共享缓存时。通过这种方式,你可以避免在系统的默认位置(通常是用户的主目录)中堆积过多的缓存文件。

!python --version

       这行代码在Jupyter笔记本中执行一个shell命令,用于检查当前环境中Python的版本。--version参数让Python打印出其版本信息。

DB_SCRIPT_WORK_PATH = os.getcwd() 
# "/root/autodl-tmp/dreambooth-aki"
%cd $DB_SCRIPT_WORK_PATH

   %cd是Jupyter笔记本的魔术命令,用于改变当前工作目录。

OUTPUT_DIR = "./output"
!mkdir -p $OUTPUT_DIR
  • 在Jupyter笔记本中执行一个shell命令,用于创建目录。
  • mkdir是一个常用的Unix/Linux命令,用于创建新的目录。
  • -p参数告诉mkdir命令,如果目录不存在,则创建它;如果目录已经存在,不要报错(不要叫唤)。此外,-p参数还允许创建必要的父目录。

DreamBooth详解

DreamBooth | AiDraw

这篇关于Dreambooth Stable Diffusion始化训练环境(AutoDL)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/607912

相关文章

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061

pytest+allure环境搭建+自动化实践过程

《pytest+allure环境搭建+自动化实践过程》:本文主要介绍pytest+allure环境搭建+自动化实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、pytest下载安装1.1、安装pytest1.2、检测是否安装成功二、allure下载安装2.

VS配置好Qt环境之后但无法打开ui界面的问题解决

《VS配置好Qt环境之后但无法打开ui界面的问题解决》本文主要介绍了VS配置好Qt环境之后但无法打开ui界面的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目UKeLvb录找到Qt安装目录中designer.UKeLvBexe的路径找到vs中的解决方案资源

SpringBoot实现多环境配置文件切换

《SpringBoot实现多环境配置文件切换》这篇文章主要为大家详细介绍了如何使用SpringBoot实现多环境配置文件切换功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 示例代码结构2. pom文件3. application文件4. application-dev文

Web技术与Nginx网站环境部署教程

《Web技术与Nginx网站环境部署教程》:本文主要介绍Web技术与Nginx网站环境部署教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Web基础1.域名系统DNS2.Hosts文件3.DNS4.域名注册二.网页与html1.网页概述2.HTML概述3.

Ubuntu上手动安装Go环境并解决“可执行文件格式错误”问题

《Ubuntu上手动安装Go环境并解决“可执行文件格式错误”问题》:本文主要介绍Ubuntu上手动安装Go环境并解决“可执行文件格式错误”问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录一、前言二、系统架构检测三、卸载旧版 Go四、下载并安装正确版本五、配置环境变量六、验证安装七、常见

Gradle下如何搭建SpringCloud分布式环境

《Gradle下如何搭建SpringCloud分布式环境》:本文主要介绍Gradle下如何搭建SpringCloud分布式环境问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录Gradle下搭建SpringCloud分布式环境1.idea配置好gradle2.创建一个空的gr

Android开发环境配置避坑指南

《Android开发环境配置避坑指南》本文主要介绍了Android开发环境配置过程中遇到的问题及解决方案,包括VPN注意事项、工具版本统一、Gerrit邮箱配置、Git拉取和提交代码、MergevsR... 目录网络环境:VPN 注意事项工具版本统一:android Studio & JDKGerrit的邮