多层感知机(MultiLayer Perceptron,MLP)python实现

2024-01-15 02:36

本文主要是介绍多层感知机(MultiLayer Perceptron,MLP)python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

多层感知机(MultiLayer Perceptron,MLP)是一种人工神经网络模型,通常用于处理分类问题。它是一种前馈神经网络(Feedforward Neural Network),由多个层次组成,每个层次包含多个神经元。

MLP 的基本组成包括:

  1. 输入层(Input Layer): 接收输入特征的层。每个输入特征都对应于输入层中的一个节点。

  2. 隐藏层(Hidden Layers): 在输入层和输出层之间的一层或多层。每个隐藏层包含多个神经元,每个神经元与前一层和后一层的所有神经元都有连接。

  3. 输出层(Output Layer): 生成最终输出的层。输出层的神经元数量通常取决于问题的类别数,例如,对于二分类问题,通常有一个输出神经元,表示两个类别的概率。

每个神经元都与前一层的所有神经元相连接,并具有带权重的连接。在每个神经元中,输入被加权并通过激活函数进行转换,产生神经元的输出。这个过程可以表示为:

输出=Activation(Weighted Sum of Inputs)

其中,激活函数通常是非线性的,它引入了非线性变换,使得网络能够学习更加复杂的函数。

MLP 使用反向传播算法进行训练,通过最小化损失函数来调整连接权重,使得网络能够对训练数据进行更好的拟合。反向传播通过计算预测与实际标签之间的误差,并反向传播该误差以调整权重。

由于 MLP 具有多个层次,它能够学习更加复杂的特征和关系,因此在许多应用中被广泛使用,包括图像识别、自然语言处理、分类等。

示例:使用 Python 中的 scikit-learn 库实现的简单 MLP ,用于解决手写数字识别(MNIST 数据集)问题:

from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn import datasets# 加载 MNIST 数据集
digits = datasets.load_digits()
X = digits.data
y = digits.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建 MLP 模型
mlp = MLPClassifier(hidden_layer_sizes=(100,), max_iter=500, activation='relu', random_state=42)# 训练模型
mlp.fit(X_train, y_train)# 预测测试集
y_pred = mlp.predict(X_test)# 计算准确度
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy}")

这个例子使用了 MLPClassifier,它是 scikit-learn 中的多层感知机分类器。在这个例子中,MLP 模型有一个包含 100 个神经元的隐藏层,使用 ReLU(Rectified Linear Unit)作为激活函数。模型在训练集上进行 500 次迭代。

实际上,深度学习任务通常使用更复杂的神经网络架构,可能包含多个隐藏层,不同的激活函数,以及其他调整参数。上述示例是一个简单的入门演示。

这篇关于多层感知机(MultiLayer Perceptron,MLP)python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/607367

相关文章

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2