扩展卡尔曼滤波(Extended Kalman Filter, EKF):理论和应用

2024-01-14 13:20

本文主要是介绍扩展卡尔曼滤波(Extended Kalman Filter, EKF):理论和应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

扩展卡尔曼滤波(Extended Kalman Filter, EKF):理论、公式和应用

引言

卡尔曼滤波是一种广泛应用于估计动态系统状态的技术,但当系统的动态模型或测量模型是非线性的时候,传统的卡尔曼滤波方法就显得无能为力。扩展卡尔曼滤波通过引入非线性系统的雅可比矩阵,弥补了这一不足,成为处理非线性系统估计的有力工具。本文将介绍扩展卡尔曼滤波的理论基础、数学公式,并通过Python代码示例演示其在一维维系统中的应用。

一、扩展卡尔曼滤波的基本理论

扩展卡尔曼滤波是对传统卡尔曼滤波的一种扩展,主要应用于非线性系统。它通过在卡尔曼滤波的预测和更新步骤中引入非线性映射(对非线性系统采用线性化的方式),解决了卡尔曼滤波在处理非线性问题时的局限性。

二、扩展卡尔曼滤波的数学公式

预测步骤:
  1. 状态预测:
    x ^ k − = f ( x ^ k − 1 , u k − 1 ) \begin{equation}\hat{x}_{k}^- = f(\hat{x}_{k-1}, u_{k-1})\end{equation} x^k=f(x^k1,uk1)

  2. 协方差预测:
    P k − = A k P k − 1 A k T + Q k \begin{equation} P_{k}^- = A_{k} P_{k-1} A_{k}^T + Q_{k}\end{equation} Pk=AkPk1AkT+Qk

    其中, A k A_{k} Ak 是状态预测函数 f ( ⋅ ) f(\cdot) f() 的雅可比矩阵,计算公式为:
    A k = ∂ f ∂ x ∣ x ^ k − 1 , u k − 1 \begin{equation}A_{k} = \frac{\partial f}{\partial x}\Big|_{\hat{x}_{k-1}, u_{k-1}}\end{equation} Ak=xf x^k1,uk1

更新步骤:
  1. 卡尔曼增益计算:
    K k = P k − H k T ( H k P k − H k T + R k ) − 1 \begin{equation}K_{k} = P_{k}^- H_{k}^T (H_{k} P_{k}^- H_{k}^T + R_{k})^{-1} \end{equation} Kk=PkHkT(HkPkHkT+Rk)1

  2. 状态更新:
    x ^ k = x ^ k − + K k ( z k − h ( x ^ k − ) ) \begin{equation}\hat{x}_{k} = \hat{x}_{k}^- + K_{k} (z_{k} - h(\hat{x}_{k}^-))\end{equation} x^k=x^k+Kk(zkh(x^k))

  3. 协方差更新:
    P k = ( I − K k H k ) P k − \begin{equation}P_{k} = (I - K_{k} H_{k}) P_{k}^-\end{equation} Pk=(IKkHk)Pk

    其中, H k H_{k} Hk是测量函数 h ( ⋅ ) h(\cdot) h() 的雅可比矩阵,计算公式为:
    H k = ∂ h ∂ x ∣ x ^ k − \begin{equation}H_{k} = \frac{\partial h}{\partial x}\Big|_{\hat{x}_{k}^-} \end{equation} Hk=xh x^k

三、扩展卡尔曼滤波与线性卡尔曼滤波的优势对比

扩展卡尔曼滤波相对于线性卡尔曼滤波的优势在于其能够处理非线性系统。线性卡尔曼滤波要求系统的动态模型和测量模型是线性的,而扩展卡尔曼滤波通过引入非线性映射,使得在非线性系统中仍能有效估计状态。

四、扩展卡尔曼滤波的Python代码示例

一维系统应用

# @copyright all reseved
# @author: Persist_Zhang
import numpy as np
import matplotlib.pyplot as pltdef f(x, u):return 0.5 * x + 25 * x / (1 + x**2) + 8 * np.cos(1.2 * u)def h(x):return 0.05 * x**2# 初始化
x_hat = np.array([0.0])
P = np.array([1.0])
Q = 1e-5
R = 0.1# 模拟数据
true_states = [f(x, 0) for x in range(100)]
measurements = [h(x) + np.random.normal(0, np.sqrt(R)) for x in true_states]# 扩展卡尔曼滤波
filtered_states = []for z in measurements:# 预测步骤x_hat_minus = f(x_hat, 0)A = 0.5 - (25 * x_hat) / (1 + x_hat**2)**2 + 8 * np.cos(1.2 * 0)P_minus = A * P * A + Q# 更新步骤H = 0.05 * x_hatK = P_minus * H / (H * P_minus * H + R)x_hat = x_hat_minus + K * (z - h(x_hat_minus))P = (1 - K * H) * P_minusfiltered_states.append(x_hat[0])filtered_states = np.array(filtered_states)# 可视化结果
plt.figure(figsize=(12, 6))plt.plot(true_states, label='True States')
plt.plot(measurements, 'ro', label='Measurements')
plt.plot(filtered_states, label='Filtered States')plt.title('Extended Kalman Filtering - 1D System')
plt.legend()
plt.show()

在这里插入图片描述

这个示例分别展示了一维系统中扩展卡尔曼滤波的应用。在这个例子中,我们通过引入非线性映射函数 f ( ⋅ ) f(\cdot) f() ( h ( ⋅ ) (h(\cdot) (h(),以及对应的雅可比矩阵,成功处理了非线性系统的状态估计问题。这突显了扩展卡尔曼滤波在实际应用中的优越性。

结论

扩展卡尔曼滤波(EKF)作为卡尔曼滤波的扩展,成功地解决了处理非线性系统估计的问题,通过引入雅可比矩阵,使得非线性映射能够得到更准确的估计。总体而言,EKF在实际应用中表现出色,为状态估计提供了有效工具。

优势:

  1. 处理非线性系统: EKF能够有效地处理非线性系统,通过引入非线性映射的雅可比矩阵,提高了状态估计的准确性。

  2. 灵活性: 相对于线性卡尔曼滤波,EKF更加灵活,适用于包含一定程度非线性的实际系统。

缺点:

  1. 计算复杂度: EKF的计算复杂度相对较高,特别是在高维系统或强非线性系统中,计算雅可比矩阵和协方差更新可能变得复杂且耗时。

  2. 对初始条件敏感: EKF对初始条件较为敏感,初始估计的准确性直接影响了滤波器的性能。

  3. 线性化误差: 由于是通过线性化非线性映射,EKF可能会引入线性化误差,尤其在非线性变化剧烈的区域。

在应用EKF时,需要权衡计算复杂度和准确性,并根据具体问题调整相关参数,以取得最佳的估计效果。

这篇关于扩展卡尔曼滤波(Extended Kalman Filter, EKF):理论和应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/605296

相关文章

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析

《Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析》InstantiationAwareBeanPostProcessor是Spring... 目录一、什么是InstantiationAwareBeanPostProcessor?二、核心方法解

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

Python Flask 库及应用场景

《PythonFlask库及应用场景》Flask是Python生态中​轻量级且高度灵活的Web开发框架,基于WerkzeugWSGI工具库和Jinja2模板引擎构建,下面给大家介绍PythonFl... 目录一、Flask 库简介二、核心组件与架构三、常用函数与核心操作 ​1. 基础应用搭建​2. 路由与参