《向量数据库指南》让「引用」为 RAG 机器人回答增加可信度

2024-01-14 09:44

本文主要是介绍《向量数据库指南》让「引用」为 RAG 机器人回答增加可信度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在之前的文章中,我们已经介绍了如何用 Milvus 向量数据库以及 LlamaIndex 搭建基础的聊天机器人《Chat Towards Data Science |如何用个人数据知识库构建 RAG 聊天机器人?书接上回,如何用 LlamaIndex 搭建聊天机器人?》。

本文将继续使用 LlamaIndex,并在前两篇文章的基础上,修改代码来为我们的结果添加引用。TruEra 在他们的一篇 RAG 评估博客介绍了结果依据(Groundness),有兴趣的朋友可以点击链接查看。
 

  • 准备步骤

首先,安装 llama-index、python-dotenv、pymilvus 和 openai
 。

! pip install llama-index python-dotenv openai pymilvus

接着,设置 OpenAI 和 Zilliz Cloud (全托管的 Milvus 向量数据库),用 load_dotenv 函数拉取存储在.env 文件中的环境变量。随后,传入环境变量,使用os获取变量值。我们用 OpenAI 作为 LLM,Zilliz Cloud(https://zilliz.com.cn/cloud) 作为向量数据库。本例中,我们用 Zilliz Cloud 及 Collection 实现数据持久化。

import osfrom dotenv import load_dotenv
import openai
load_dotenv()
openai.api_key = os.getenv("OPENAI_API_KEY")
zilliz_uri = os.getenv("ZILLIZ_URI")
zilliz_token = os.getenv("ZILLIZ_TOKEN")

  • 设置参数

接下来,定义 RAG 聊天机器人的参数。我们必须设置 3 个参数:Embedding 模型、Milvus向量数据库和 LlamaIndex 数据传入。

首先,设置我们的 Embedding 模型。在本例中,我们用在之前的文章中用到的HuggingFace MiniLM L12 模型来抓取数据并转换为 Embedding 向量,同时可以通过 LlamaIndex 使用 HuggingFaceEmbedding 模块来加载这些数据。
 

from llama_index.embeddings import HuggingFaceEmbedding
embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L12-v2")

其次,设置向量数据库。由于 Zilliz Cloud 可以提供全托管的 Milvus 服务,我们可以使用MilvusVectorStore模块来连接 Zilliz Cloud。在此过程中,需要提供 URI、token 并定义 Collection名称、相似度类型和文本键。

此前,我们已经通过环境变量获取了 Zilliz Cloud URI 和 token,Collection 名称、相似度类型和文本键则沿用之前文章中的设置。

from llama_index.vector_stores import MilvusVectorStore
vdb = MilvusVectorStore(uri = zilliz_uri,token = zilliz_token,collection_name = "tds_articles",similarity_metric = "L2",text_key="paragraph"
)

最后,整合 LlamaIndex 数据抽象。我们需要的两个原生组件是服务上下文(service context)以及向量存储索引(vector store index),服务上下文用于传入一些预定义的服务,向量存储索引用于从向量数据库创建一个 LlamaIndex “索引”。在本例中,我们用服务上下文来传入 Embedding 模型,用现有的 Milvus 向量数据库和创建的服务上下文来创建向量索引。

from llama_index import VectorStoreIndex, ServiceContext
service_context = ServiceContext.from_defaults(embed_model=embed_model)
vector_index = VectorStoreIndex.from_vector_store(vector_store=vdb, service_context=service_context)

  • 为聊天机器人回答添加引用

引用和注释(Citation and attribution)能够进一步优化我们的 RAG 应用,可以通过引用和注释,了解回答的数据来源,并依此评估获得的回答有多准确。

LlamaIndex 通过其CitationQueryEngine模块提供了一种实现引用的简便方法,这个模块非常容易上手。用from_args并传入向量索引,便可创建一个引用查询引擎。由于之前在向量索引中定义了文本字段,所以不需要再额外添加任何东西。

from llama_index.query_engine import CitationQueryEngine
query_engine = CitationQueryEngine.from_args(vector_index
)

搭建了查询引擎后,便可以开始发送查询问题了。例如,我们向聊天机器人提问:“What is a large language model?(什么是大语言模型?)”。预期中,我们应该可以从 Towards Data Science 数据集中获取这个问题的答案。

res = query_engine.query("What is a large language model?")
from pprint import pprint
pprint(res)

下图为响应示例,响应中包含了回答和来源文本,我们可以根据来源判断得到的回答的准确性。

  • 总结

本文采用了引用和注释的方法来为机器人的回答增加可信度。可以说,引用和注释解决了 RAG 的两个常见问题,通过引用和注释,我们能够知道数据来源。同时,我们还能根据数据来源评估获得的回答有多准确。此外,我们在文章中还使用了 LlamaIndex 和 Zilliz Cloud,LlamaIndex 能帮我们轻松创建获取来源的引擎,而 Zilliz Cloud 帮我们轻松实现数据持久化。

这篇关于《向量数据库指南》让「引用」为 RAG 机器人回答增加可信度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/604738

相关文章

PostgreSQL数据库密码被遗忘时的操作步骤

《PostgreSQL数据库密码被遗忘时的操作步骤》密码遗忘是常见的用户问题,因此提供一种安全的遗忘密码找回机制是十分必要的,:本文主要介绍PostgreSQL数据库密码被遗忘时的操作步骤的相关资... 目录前言一、背景知识二、Windows环境下的解决步骤1. 找到PostgreSQL安装目录2. 修改p

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

SpringMVC高效获取JavaBean对象指南

《SpringMVC高效获取JavaBean对象指南》SpringMVC通过数据绑定自动将请求参数映射到JavaBean,支持表单、URL及JSON数据,需用@ModelAttribute、@Requ... 目录Spring MVC 获取 JavaBean 对象指南核心机制:数据绑定实现步骤1. 定义 Ja

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

SQLite3命令行工具最佳实践指南

《SQLite3命令行工具最佳实践指南》SQLite3是轻量级嵌入式数据库,无需服务器支持,具备ACID事务与跨平台特性,适用于小型项目和学习,sqlite3.exe作为命令行工具,支持SQL执行、数... 目录1. SQLite3简介和特点2. sqlite3.exe使用概述2.1 sqlite3.exe

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

Java SWT库详解与安装指南(最新推荐)

《JavaSWT库详解与安装指南(最新推荐)》:本文主要介绍JavaSWT库详解与安装指南,在本章中,我们介绍了如何下载、安装SWTJAR包,并详述了在Eclipse以及命令行环境中配置Java... 目录1. Java SWT类库概述2. SWT与AWT和Swing的区别2.1 历史背景与设计理念2.1.