《向量数据库指南》让「引用」为 RAG 机器人回答增加可信度

2024-01-14 09:44

本文主要是介绍《向量数据库指南》让「引用」为 RAG 机器人回答增加可信度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在之前的文章中,我们已经介绍了如何用 Milvus 向量数据库以及 LlamaIndex 搭建基础的聊天机器人《Chat Towards Data Science |如何用个人数据知识库构建 RAG 聊天机器人?书接上回,如何用 LlamaIndex 搭建聊天机器人?》。

本文将继续使用 LlamaIndex,并在前两篇文章的基础上,修改代码来为我们的结果添加引用。TruEra 在他们的一篇 RAG 评估博客介绍了结果依据(Groundness),有兴趣的朋友可以点击链接查看。
 

  • 准备步骤

首先,安装 llama-index、python-dotenv、pymilvus 和 openai
 。

! pip install llama-index python-dotenv openai pymilvus

接着,设置 OpenAI 和 Zilliz Cloud (全托管的 Milvus 向量数据库),用 load_dotenv 函数拉取存储在.env 文件中的环境变量。随后,传入环境变量,使用os获取变量值。我们用 OpenAI 作为 LLM,Zilliz Cloud(https://zilliz.com.cn/cloud) 作为向量数据库。本例中,我们用 Zilliz Cloud 及 Collection 实现数据持久化。

import osfrom dotenv import load_dotenv
import openai
load_dotenv()
openai.api_key = os.getenv("OPENAI_API_KEY")
zilliz_uri = os.getenv("ZILLIZ_URI")
zilliz_token = os.getenv("ZILLIZ_TOKEN")

  • 设置参数

接下来,定义 RAG 聊天机器人的参数。我们必须设置 3 个参数:Embedding 模型、Milvus向量数据库和 LlamaIndex 数据传入。

首先,设置我们的 Embedding 模型。在本例中,我们用在之前的文章中用到的HuggingFace MiniLM L12 模型来抓取数据并转换为 Embedding 向量,同时可以通过 LlamaIndex 使用 HuggingFaceEmbedding 模块来加载这些数据。
 

from llama_index.embeddings import HuggingFaceEmbedding
embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L12-v2")

其次,设置向量数据库。由于 Zilliz Cloud 可以提供全托管的 Milvus 服务,我们可以使用MilvusVectorStore模块来连接 Zilliz Cloud。在此过程中,需要提供 URI、token 并定义 Collection名称、相似度类型和文本键。

此前,我们已经通过环境变量获取了 Zilliz Cloud URI 和 token,Collection 名称、相似度类型和文本键则沿用之前文章中的设置。

from llama_index.vector_stores import MilvusVectorStore
vdb = MilvusVectorStore(uri = zilliz_uri,token = zilliz_token,collection_name = "tds_articles",similarity_metric = "L2",text_key="paragraph"
)

最后,整合 LlamaIndex 数据抽象。我们需要的两个原生组件是服务上下文(service context)以及向量存储索引(vector store index),服务上下文用于传入一些预定义的服务,向量存储索引用于从向量数据库创建一个 LlamaIndex “索引”。在本例中,我们用服务上下文来传入 Embedding 模型,用现有的 Milvus 向量数据库和创建的服务上下文来创建向量索引。

from llama_index import VectorStoreIndex, ServiceContext
service_context = ServiceContext.from_defaults(embed_model=embed_model)
vector_index = VectorStoreIndex.from_vector_store(vector_store=vdb, service_context=service_context)

  • 为聊天机器人回答添加引用

引用和注释(Citation and attribution)能够进一步优化我们的 RAG 应用,可以通过引用和注释,了解回答的数据来源,并依此评估获得的回答有多准确。

LlamaIndex 通过其CitationQueryEngine模块提供了一种实现引用的简便方法,这个模块非常容易上手。用from_args并传入向量索引,便可创建一个引用查询引擎。由于之前在向量索引中定义了文本字段,所以不需要再额外添加任何东西。

from llama_index.query_engine import CitationQueryEngine
query_engine = CitationQueryEngine.from_args(vector_index
)

搭建了查询引擎后,便可以开始发送查询问题了。例如,我们向聊天机器人提问:“What is a large language model?(什么是大语言模型?)”。预期中,我们应该可以从 Towards Data Science 数据集中获取这个问题的答案。

res = query_engine.query("What is a large language model?")
from pprint import pprint
pprint(res)

下图为响应示例,响应中包含了回答和来源文本,我们可以根据来源判断得到的回答的准确性。

  • 总结

本文采用了引用和注释的方法来为机器人的回答增加可信度。可以说,引用和注释解决了 RAG 的两个常见问题,通过引用和注释,我们能够知道数据来源。同时,我们还能根据数据来源评估获得的回答有多准确。此外,我们在文章中还使用了 LlamaIndex 和 Zilliz Cloud,LlamaIndex 能帮我们轻松创建获取来源的引擎,而 Zilliz Cloud 帮我们轻松实现数据持久化。

这篇关于《向量数据库指南》让「引用」为 RAG 机器人回答增加可信度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/604738

相关文章

SpringBoot整合OpenFeign的完整指南

《SpringBoot整合OpenFeign的完整指南》OpenFeign是由Netflix开发的一个声明式Web服务客户端,它使得编写HTTP客户端变得更加简单,本文为大家介绍了SpringBoot... 目录什么是OpenFeign环境准备创建 Spring Boot 项目添加依赖启用 OpenFeig

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置

CentOS7更改默认SSH端口与配置指南

《CentOS7更改默认SSH端口与配置指南》SSH是Linux服务器远程管理的核心工具,其默认监听端口为22,由于端口22众所周知,这也使得服务器容易受到自动化扫描和暴力破解攻击,本文将系统性地介绍... 目录引言为什么要更改 SSH 默认端口?步骤详解:如何更改 Centos 7 的 SSH 默认端口1

SpringBoot多数据源配置完整指南

《SpringBoot多数据源配置完整指南》在复杂的企业应用中,经常需要连接多个数据库,SpringBoot提供了灵活的多数据源配置方式,以下是详细的实现方案,需要的朋友可以参考下... 目录一、基础多数据源配置1. 添加依赖2. 配置多个数据源3. 配置数据源Bean二、JPA多数据源配置1. 配置主数据

python中各种常见文件的读写操作与类型转换详细指南

《python中各种常见文件的读写操作与类型转换详细指南》这篇文章主要为大家详细介绍了python中各种常见文件(txt,xls,csv,sql,二进制文件)的读写操作与类型转换,感兴趣的小伙伴可以跟... 目录1.文件txt读写标准用法1.1写入文件1.2读取文件2. 二进制文件读取3. 大文件读取3.1

SpringBoot中配置Redis连接池的完整指南

《SpringBoot中配置Redis连接池的完整指南》这篇文章主要为大家详细介绍了SpringBoot中配置Redis连接池的完整指南,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以... 目录一、添加依赖二、配置 Redis 连接池三、测试 Redis 操作四、完整示例代码(一)pom.

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

数据库面试必备之MySQL中的乐观锁与悲观锁

《数据库面试必备之MySQL中的乐观锁与悲观锁》:本文主要介绍数据库面试必备之MySQL中乐观锁与悲观锁的相关资料,乐观锁适用于读多写少的场景,通过版本号检查避免冲突,而悲观锁适用于写多读少且对数... 目录一、引言二、乐观锁(一)原理(二)应用场景(三)示例代码三、悲观锁(一)原理(二)应用场景(三)示例

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4: