RAG代码实操之斗气强者萧炎

2024-01-14 01:04

本文主要是介绍RAG代码实操之斗气强者萧炎,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

📑前言

本文主要是【RAG】——RAG代码实操的文章,如果有什么需要改进的地方还请大佬指出⛺️

🎬作者简介:大家好,我是听风与他🥇
☁️博客首页:CSDN主页听风与他
🌄每日一句:狠狠沉淀,顶峰相见

目录

    • 📑前言
    • 1.引言
    • 2.什么是RAG?
    • 3.LangChain实现RAG
      • 3.1基础环境准备
      • 3.2向量数据库
        • 1.「加载数据」
        • 2.「数据分块」
        • 3.「数据块存储」
    • 4.RAG实现
      • 1.「第一步:数据检索」
      • 2.「第二步:提示增强」
      • 3.「第三步:答案生成」
    • 📑文章末尾

1.引言

  • 针对大型语言模型效果不好的问题,之前人们主要关注大模型再训练、大模型微调、大模型的Prompt增强,但对于专有、快速更新的数据却并没有较好的解决方法,为此检索增强生成(RAG)的出现,弥合了LLM常识和专有数据之间的差距。

    今天给大家分享的这篇文章,将介绍RAG的概念理论,并带大家利用LangChain进行编排,OpenAI语言模型、Weaviate 矢量数据库(也可以自己搭建Milvus向量数据库)来实现简单的 RAG 管道。

2.什么是RAG?

  • RAG的全称是Retrieval-Augmented Generation,中文翻译为检索增强生成。它是一个为大模型提供外部知识源的概念,这使它们能够生成准确且符合上下文的答案,同时能够减少模型幻觉。

3.LangChain实现RAG

3.1基础环境准备

  • 1、安装所有需要依赖的相关python包,其中包括用于编排的langchain、大模型接口openai、矢量数据库的客户端 weaviate-client。
pip install langchain openai weaviate-client

3.2向量数据库

接下来,你需要准备一个矢量数据库作为保存所有附加信息的外部知识源。该矢量数据库是通过以下步骤填充的:1)加载数据;2)数据分块;3)数据[块存储]

1.「加载数据」
  • 这里选择了一篇斗破苍穹的小说,作为文档输入 。文档是txt文本,要加载文本这里使用 LangChain 的 TextLoader。
from langchain.document_loaders import TextLoader
loader = TextLoader('a.txt')
documents = loader.load()
2.「数据分块」
  • 因为文档在其原始状态下太长(将近5万行),无法放入大模型的上下文窗口,所以需要将其分成更小的部分。LangChain 内置了许多用于文本的分割器。这里使用 chunk_size 约为 1024 且 chunk_overlap 为128 的 CharacterTextSplitter 来保持块之间的文本连续性。
from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(chunk_size=1024, chunk_overlap=128)
chunks = text_splitter.split_documents(documents)

安装依赖

pip install tiktoken
3.「数据块存储」
  • 要启用跨文本块的语义搜索,需要为每个块生成向量嵌入,然后将它们与其嵌入存储在一起。要生成向量嵌入,可以使用 OpenAI 嵌入模型,并使用 Weaviate 向量数据库来进行存储。通过调用 .from_documents(),矢量数据库会自动填充块。
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Weaviate
import weaviate
from weaviate.embedded import EmbeddedOptions
import openaiclient = weaviate.Client(embedded_options = EmbeddedOptions()
)vectorstore = Weaviate.from_documents(client = client,documents = chunks,# embedding = OpenAIEmbeddings(),embedding = OpenAIEmbeddings(openai_api_key="openai的key",openai_api_base = "中转api"),by_text = False
)

4.RAG实现

1.「第一步:数据检索」

  • 将数据存入矢量数据库后,就可以将其定义为检索器组件,该组件根据用户查询和嵌入块之间的语义相似性获取相关上下文。
retriever = vectorstore.as_retriever()

2.「第二步:提示增强」

  • 完成数据检索之后,就可以使用相关上下文来增强提示。在这个过程中需要准备一个提示模板。可以通过提示模板轻松自定义提示,如下所示。
from langchain.prompts import ChatPromptTemplate
template = """你是一个问答机器人助手,请使用以下检索到的上下文来回答问题,如果你不知道答案,就说你不知道。问题是:{question},上下文: {context},答案是:
"""
prompt = ChatPromptTemplate.from_template(template)

3.「第三步:答案生成」

  • 利用 RAG 管道构建一条链,将检索器、提示模板和 LLM 链接在一起。定义了 RAG 链,就可以调用它了。
from langchain.chat_models import ChatOpenAI
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.output_parser import StrOutputParser
llm = ChatOpenAI(model_name="gpt-3.5-turbo",openai_api_key="openai的key",openai_api_base = "中转api", temperature=0)rag_chain = ({"context": retriever,  "question": RunnablePassthrough()} | prompt | llm| StrOutputParser() 
)query = "萧薰儿是谁?"
res=rag_chain.invoke(query)
print(f'答案:{res}')

总的来说,RAG的生成过程如下图所示:

img

📑文章末尾

在这里插入图片描述

这篇关于RAG代码实操之斗气强者萧炎的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/603409

相关文章

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计