语义分割miou指标计算详解

2024-01-14 00:28

本文主要是介绍语义分割miou指标计算详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1. 语义分割的评价指标
    • 2. 混淆矩阵计算
      • 2.1 np.bincount的使用
      • 2.2 混淆矩阵计算
    • 3. 语义分割指标计算
      • 3.1 IOU计算
        • 方式1(推荐)
        • 方式2
      • 3.2 Precision 计算
      • 3.3 总体的Accuracy计算
      • 3.4 Recall 计算
      • 3.5 MIOU计算
    • 参考

MIoU全称为Mean Intersection over Union,平均交并比。可作为语义分割系统性能的评价指标。

  • P:Prediction预测值
  • G:Ground Truth真实值
    在这里插入图片描述
    其中IOU: 交并比就是该类的真实标签和预测值的交和并的比值
    在这里插入图片描述
    单类的交并比可以理解为下图:
    在这里插入图片描述

1. 语义分割的评价指标

True Positive (TP): 把正样本成功预测为正。
True Negative (TN):把负样本成功预测为负。
False Positive (FP):把负样本错误地预测为正。
False Negative (FN):把正样本错误的预测为负。

  • (1) Accuracy准确率,指的是“预测正确的样本数÷样本数总数”。计算公式为:
    A c c u r a c y = T P + T N T P + T N + F P + F N Accuracy = \frac{TP+TN}{TP+TN+FP+FN} Accuracy=TP+TN+FP+FNTP+TN

  • (2) Precision精确率或者精度,指的是预测为Positive的样本,占所有预测样本的比率
    P r e c i s i o n = T P T P + F P Precision= \frac{TP}{TP+FP} Precision=TP+FPTP

  • (3)Recall召回率,指的是预测为Positive的样本,占所有Positive样本的比率
    P r e c i s i o n = T P P Precision= \frac{TP}{P} Precision=PTP

  • (4) F1 score: 综合考虑了precisionrecall两方面的因素,做到了对于两者的调和,即:既要“求精”也要“求全”,做到不偏科。

F 1 s c o r e = 2 ∗ p r e c i s i o n ∗ r e c a l l p r e c i s i o n + r e c a l l F1 score= \frac{2*precision*recall}{precision+recall} F1score=precision+recall2precisionrecall

  • (5) MIOU 作为为语义分割最重要标准度量。其计算两个集合的交集和并集之比,在语义分割的问题中,这两个集合为真实值和预测值。在每个类上计算IoU,之后平均。计算公式如下
    M I O U = 1 k + 1 ∑ i = 0 k T P F N + F P + T P MIOU =\frac{1}{k+1}\sum_{i=0}^{k}\frac{TP}{FN+FP+TP} MIOU=k+11i=0kFN+FP+TPTP
    等价于:
    M I O U = 1 k + 1 ∑ i = 0 k p i i ∑ j = 0 k p i j + ∑ j = 0 k p j i − p i i MIOU=\frac{1}{k+1}\sum_{i=0}^{k}\frac{p_{ii}}{\sum_{j=0}^k p_{ij} + \sum_{j=0}^k p_{ji} -p_{ii}} MIOU=k+11i=0kj=0kpij+j=0kpjipiipii

其中: p i i p_{ii} pii 真实为类别i,预测也为i的像素个数,也就是正确预测的像素个数TP; p i j p_{ij} pij表示真实为类别i,但预测为类别j的像素个数,也就是FN p j i p_{ji} pji表示真实为类别j,但预测为类别i的像素个数, 也就是FP

注意: 对于多分类TN为0 ,即没有所谓的负样本

2. 混淆矩阵计算

  • 计算MIoU,我们需要借助混淆矩阵来进行计算。
  • 混淆矩阵就是统计分类模型的分类结果,即:统计归对类,归错类的样本的个数,然后把结果放在一个表里展示出来,这个表就是混淆矩阵
  • 每一列代表预测值(pred)每一行代表的是实际的类别(gt)
    在这里插入图片描述
  • 对角都对TP,横看真实,竖看预测: 每一行之和,为该行对应类(如Cat)的总数;每一列之和为该列对应类别的预测的总数。

2.1 np.bincount的使用

在计算混淆矩阵时,可以利用np.bincount函数方便我们计算。

numpy.bincount(x, weights=None, minlength=None)
  • 该方法返回每个索引值在x中出现的次数
  • 给一个向量x,x中最大的元素记为j,返回一个向量1行j+1列的向量y,y[i]代表i在x中出现的次数
#x中最大的数为7,那么它的索引值为0->7
x = np.array([0, 1, 1, 3, 2, 1, 7])
#索引0出现了1次,索引1出现了3次......索引5出现了0次......
np.bincount(x)
#因此,输出结果为:array([1, 3, 1, 1, 0, 0, 0, 1])
  • minlength也是一个常用的参数,表示输出的数组长度至少为minlength,如果x中最大的元素加1大于数组长度,那么数组的长度以x中最大元素加1为准(例如,如果数组中最大元素为3,minlength=5,那么数组的长度为5;如果数组中最大元素为7,minlength=5,那么数组的最大长度为7+1=8,这里之所以加1是因为元素0也占了一个索引)。举个例子说明:
# a中最大的数为3,因此数组长度为4,那么它的索引值为0->3
a = np.array([2, 2, 1, 3 ])
# 本来数组的长度为4,但指定了minlength为7,因此现在数组长度为7(多的补0),所以现在它的索引值为0->6
np.bincount(x, minlength=7)
# 输出结果为:array([0, 1, 2, 1, 0, 0, 0])# a中最大的数为4,因此bin的数量为5,那么它的索引值为0->4
x = np.array([4, 2, 3, 1, 2])
# 数组的长度原本为5,但指定了minlength为1,因为5 > 1,所以这个参数不起作用,索引值还是0->4
np.bincount(x, minlength=1)
# 输出结果为:array([0, 1, 2, 1,1])

2.2 混淆矩阵计算

# 设标签宽W,长H
def fast_hist(a, b, n):#--------------------------------------------------------------------------------##   a是转化成一维数组的标签,形状(H×W,);b是转化成一维数组的预测结果,形状(H×W,)#--------------------------------------------------------------------------------#k = (a >= 0) & (a < n)#--------------------------------------------------------------------------------##   np.bincount计算了从0到n**2-1这n**2个数中每个数出现的次数,返回值形状(n, n)#   返回中,写对角线上的为分类正确的像素点#--------------------------------------------------------------------------------#return np.bincount(n * a[k].astype(int) + b[k], minlength=n ** 2).reshape(n, n)  
  • 产生n×n的混淆矩阵统计表
    • 参数a:即:真实的标签gt, 需要reshape为一行输入
    • 参数b:即预测的标签pred,它是经过argmax输出的预测8位标签图, 每个像素表示为类别索引(reshape为一行输入),
    • 参数n:类别数cls_num

  • 首先过滤gt中,类别超过n的索引,确保gt的分类都包含在n个类别中
 k = (a >= 0) & (a < n)
  • 如果要去掉背景,不将背景计算在混淆矩阵,则可以写为:
 k = (a > 0) & (a < n) #去掉了背景,假设0是背景
  • 然后利用np.bincount生成元素个数为n*n的数组,并且reshape n × n n \times n n×n的混淆矩阵,这样确保混淆矩阵行和列都为类别class的个数n
  • n*n数组中,每个元素的值,表示为0~n*n的索引值在x中出现的次数,这样就获得了最终混淆矩阵。这里的x表示为n * a[k] + b[k] , 为啥这么定义呢?

举例如下:将图片的gt标签a和pred输出图片b,都转换为一行; a和b中每个元素代表类别索引

在这里插入图片描述

  • 前面8, 9, 4, 7, 6都预测正确, 对于预测正确的像素来说,n * a + b就是对角线的值; 假设n=10,有10类。n * a + b就是88, 99, 44, 77, 66
  • 紧接着6预测成了5, 因此n * a + b就是65
  • 88, 99, 44, 77, 66就是对角线上的值(如下图红框,65就是预测错误,并且能真实反映把6预测成了5(如下图蓝框
    在这里插入图片描述

3. 语义分割指标计算

在这里插入图片描述

图 混淆矩阵

3.1 IOU计算

方式1(推荐)

计算每个类别的IOU计算:
I O U = T P F N + F P + T P IOU =\frac{TP}{FN+FP+TP} IOU=FN+FP+TPTP

def per_class_iu(hist):return np.diag(hist) / np.maximum((hist.sum(1) + hist.sum(0) - np.diag(hist)), 1) 
  • 输入hist 表示 2维的混淆矩阵,大小为n*n (n为类别数)
  • 混淆矩阵对角线元素值,表示每个类别预测正确的数TP:
np.diag(hist)
  • 其中:混淆矩阵所对应中,每一行为对应类别(如类1)的统计值中,对角线位置为正常预测为该类别的统计值(TP),其他位置则是错误的将该类别预测为其他的类别FN: 因此每个类别的FP统计值为:
FN =hist.sum(1) -TP = hist.sum(1) - np.diag(hist)
  • 同理,预测为该类别所对应的列中,对角线为正确预测,其他位置则是将其他类别错误的预测为该列所对应的类别,也就是FP
FP =hist.sum(0) -TP = hist.sum(0) - np.diag(hist)

因此分母FN_FP+TP=np.maximum(hist.sum(1) + hist.sum(0) - np.diag(hist),1), 这里加上np.maximum确保了分母不为0

方式2
def IOU(pred,target,n_classes = args.num_class ):ious = []# ignore IOU for background classfor cls in range(1,n_classes):pred_inds = pred == clstarget_inds = target == cls# target_sum = target_inds.sum()intersection = (pred_inds[target_inds]).sum()union = pred_inds.sum() + target_inds.sum() - intersectionif union == 0:ious.append(float('nan')) # If there is no ground truth,do not include in evaluationelse:ious.append(float(intersection)/float(max(union,1)))return ious

参考:https://github.com/dilligencer-zrj/code_zoo/blob/master/compute_mIOU

3.2 Precision 计算

每个类别的Precision 计算如下:

P r e c i s i o n = T P T P + F P Precision= \frac{TP}{TP+FP} Precision=TP+FPTP

def per_class_Precision(hist):return np.diag(hist) / np.maximum(hist.sum(0), 1) 
  • 其中 np.diag(hist) 为TP值,hist.sum(0)表示为 TP+FP, np.maximum确保确保分母不为0

3.3 总体的Accuracy计算

总体的Accuracy计算如下:

A c c u r a c y = T P + T N T P + T N + F P + F N Accuracy = \frac{TP+TN}{TP+TN+FP+FN} Accuracy=TP+TN+FP+FNTP+TN
由于是多类别,没有负样本,因此TN为0。

def per_Accuracy(hist):return np.sum(np.diag(hist)) / np.maximum(np.sum(hist), 1) 

3.4 Recall 计算

recall指的是预测为Positive的样本,占所有Positive样本的比率
P r e c i s i o n = T P P Precision= \frac{TP}{P} Precision=PTP

def per_class_PA_Recall(hist):return np.diag(hist) / np.maximum(hist.sum(1), 1) 
  • 每一行统计值为该类别样本的真实数量P, 因此P = hist.sum(1)

3.5 MIOU计算

def compute_mIoU(gt_dir, pred_dir, png_name_list, num_classes, name_classes=None):  print('Num classes', num_classes)  #-----------------------------------------##   创建一个全是0的矩阵,是一个混淆矩阵#-----------------------------------------#hist = np.zeros((num_classes, num_classes))#------------------------------------------------##   获得验证集标签路径列表,方便直接读取#   获得验证集图像分割结果路径列表,方便直接读取#------------------------------------------------#gt_imgs     = [join(gt_dir, x + ".png") for x in png_name_list]  pred_imgs   = [join(pred_dir, x + ".png") for x in png_name_list]  #------------------------------------------------##   读取每一个(图片-标签)对#------------------------------------------------#for ind in range(len(gt_imgs)): #------------------------------------------------##   读取一张图像分割结果,转化成numpy数组#------------------------------------------------#pred = np.array(Image.open(pred_imgs[ind]))  #------------------------------------------------##   读取一张对应的标签,转化成numpy数组#------------------------------------------------#label = np.array(Image.open(gt_imgs[ind]))  # 如果图像分割结果与标签的大小不一样,这张图片就不计算if len(label.flatten()) != len(pred.flatten()):  print('Skipping: len(gt) = {:d}, len(pred) = {:d}, {:s}, {:s}'.format(len(label.flatten()), len(pred.flatten()), gt_imgs[ind],pred_imgs[ind]))continue#------------------------------------------------##   对一张图片计算21×21的hist矩阵,并累加#------------------------------------------------#hist += fast_hist(label.flatten(), pred.flatten(), num_classes)  # 每计算10张就输出一下目前已计算的图片中所有类别平均的mIoU值if name_classes is not None and ind > 0 and ind % 10 == 0: print('{:d} / {:d}: mIou-{:0.2f}%; mPA-{:0.2f}%; Accuracy-{:0.2f}%'.format(ind, len(gt_imgs),100 * np.nanmean(per_class_iu(hist)),100 * np.nanmean(per_class_PA_Recall(hist)),100 * per_Accuracy(hist)))#------------------------------------------------##   计算所有验证集图片的逐类别mIoU值#------------------------------------------------#IoUs        = per_class_iu(hist)PA_Recall   = per_class_PA_Recall(hist)Precision   = per_class_Precision(hist)#------------------------------------------------##   逐类别输出一下mIoU值#------------------------------------------------#if name_classes is not None:for ind_class in range(num_classes):print('===>' + name_classes[ind_class] + ':\tIou-' + str(round(IoUs[ind_class] * 100, 2)) \+ '; Recall (equal to the PA)-' + str(round(PA_Recall[ind_class] * 100, 2))+ '; Precision-' + str(round(Precision[ind_class] * 100, 2)))#-----------------------------------------------------------------##   在所有验证集图像上求所有类别平均的mIoU值,计算时忽略NaN值#-----------------------------------------------------------------#print('===> mIoU: ' + str(round(np.nanmean(IoUs) * 100, 2)) + '; mPA: ' + str(round(np.nanmean(PA_Recall) * 100, 2)) + '; Accuracy: ' + str(round(per_Accuracy(hist) * 100, 2)))  return np.array(hist, np.int), IoUs, PA_Recall, Precision
  • 首先创建一个维度为(num_classes, num_classes)的空混淆矩阵hist
  • 遍历pred_imgsgt_imgs, 将遍历得到的每一张predlabel展平(flatten)到一维,输入到fast_hist计算单张图片预测的混淆矩阵,将每次的计算结果加到总的混淆矩阵hist
for ind in range(len(gt_imgs)): #------------------------------------------------##   读取一张图像分割结果,转化成numpy数组#------------------------------------------------#pred = np.array(Image.open(pred_imgs[ind]))  #------------------------------------------------##   读取一张对应的标签,转化成numpy数组#------------------------------------------------#label = np.array(Image.open(gt_imgs[ind]))  # 如果图像分割结果与标签的大小不一样,这张图片就不计算if len(label.flatten()) != len(pred.flatten()):  print('Skipping: len(gt) = {:d}, len(pred) = {:d}, {:s}, {:s}'.format(len(label.flatten()), len(pred.flatten()), gt_imgs[ind],pred_imgs[ind]))continue#------------------------------------------------##   对一张图片计算21×21的hist矩阵,并累加#------------------------------------------------#hist += fast_hist(label.flatten(), pred.flatten(), num_classes) 
  • 计算10张就输出一下目前已计算的图片中所有类别平均的mIoU
# 每计算10张就输出一下目前已计算的图片中所有类别平均的mIoU值if name_classes is not None and ind > 0 and ind % 10 == 0: print('{:d} / {:d}: mIou-{:0.2f}%; mPA-{:0.2f}%; Accuracy-{:0.2f}%'.format(ind, len(gt_imgs),100 * np.nanmean(per_class_iu(hist)),100 * np.nanmean(per_class_PA_Recall(hist)),100 * per_Accuracy(hist)))
  • 遍历完成后,得到所有类别的Iou值IoUs以及PA_Recall Precision ,并逐类别输出一下mIoU值
   if name_classes is not None:for ind_class in range(num_classes):print('===>' + name_classes[ind_class] + ':\tIou-' + str(round(IoUs[ind_class] * 100, 2)) \+ '; Recall (equal to the PA)-' + str(round(PA_Recall[ind_class] * 100, 2))+ '; Precision-' + str(round(Precision[ind_class] * 100, 2)))
  • 最后在所有验证集图像上求所有类别平均的mIoU值
 print('===> mIoU: ' + str(round(np.nanmean(IoUs) * 100, 2)) + '; mPA: ' + str(round(np.nanmean(PA_Recall) * 100, 2)) + '; Accuracy: ' + str(round(per_Accuracy(hist) * 100, 2)))  

参考

  • https://github.com/bubbliiiing/deeplabv3-plus-pytorch/blob/main/utils/utils_metrics.py
  • https://github.com/dilligencer-zrj/code_zoo/blob/master/compute_mIOU
  • https://www.jianshu.com/p/42939bf83b8a

这篇关于语义分割miou指标计算详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/603310

相关文章

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

MySQL数据库约束深入详解

《MySQL数据库约束深入详解》:本文主要介绍MySQL数据库约束,在MySQL数据库中,约束是用来限制进入表中的数据类型的一种技术,通过使用约束,可以确保数据的准确性、完整性和可靠性,需要的朋友... 目录一、数据库约束的概念二、约束类型三、NOT NULL 非空约束四、DEFAULT 默认值约束五、UN

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

MySQL中的分组和多表连接详解

《MySQL中的分组和多表连接详解》:本文主要介绍MySQL中的分组和多表连接的相关操作,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录mysql中的分组和多表连接一、MySQL的分组(group javascriptby )二、多表连接(表连接会产生大量的数据垃圾)MySQL中的

Java 实用工具类Spring 的 AnnotationUtils详解

《Java实用工具类Spring的AnnotationUtils详解》Spring框架提供了一个强大的注解工具类org.springframework.core.annotation.Annot... 目录前言一、AnnotationUtils 的常用方法二、常见应用场景三、与 JDK 原生注解 API 的

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多