【hiho一下 第四十二周】骨牌覆盖问题·二

2024-01-13 11:58

本文主要是介绍【hiho一下 第四十二周】骨牌覆盖问题·二,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原题地址:http://hihocoder.com/contest/hiho42/problem/1
2xN的骨牌问题:http://blog.csdn.net/smile_watermelon/article/details/45151175

题目描述

上一周我们研究了2xN的骨牌问题,这一周我们不妨加大一下难度,研究一下3xN的骨牌问题?
所以我们的题目是:对于3xN的棋盘,使用1x2的骨牌去覆盖一共有多少种不同的覆盖方法呢?
首先我们可以肯定,奇数长度一定是没有办法覆盖的;对于偶数长度,比如2,4,我们有下面几种覆盖方式:【注】原题中此处图片有错误,下图是更正后的图片

3×N问题举例

输入

第1行:1个整数N。表示棋盘长度。1≤N≤100,000,000

输出

第1行:1个整数,表示覆盖方案数 MOD 12357

样例输入

62247088

样例输出

4037


解题思路

原题中有一个解题提示,我看了以后觉得太乱了,非常不好懂,下面是我整理的我的思路。

看到这个题,我还是尝试按照动态规划的思想去找一个规律,将问题划归为其子问题,不难发现,如果要将问题划归为子问题的话,需要使得骨牌排列的整齐,如下图1的形式,而不是其他几种形式(灰色部分表示已经摆好骨牌了):

灰色部分表示已经摆好骨牌了

即,当我们已经把骨牌整齐的排练好某x长度后,剩余的n-x长度即是一个子问题。接下来,我们看有哪些摆放形式可以构成图1中的形式。

  1. 首先,我们当n=2时,我们可以很轻松的找出所有可能的构造形式,如下:
    这里写图片描述

  2. 然后我们考虑,是否还有其他形式呢?我们发现当n=4时,有如下两种未出现过的构造形式:
    这里写图片描述

  3. 接下来还有吗?还有,n=6时,有如下两种未出现过的结构:
    这里写图片描述

  4. 同理,n=8,10,12,14…时都会新添两种类似步骤2和步骤3中的新的排列方式。

我们需要注意的是,在n增大的同时,除了新增的排列方式之外,原先的排列方式也是存在的。

那么如何推导递归式呢?

我们每次只考虑当前步骤的摆法,然后减去当前步骤占用的空间,然后划归为其子问题。

对于n,我们假设解决方案数目为f(n)。考虑如下:

  • 当n为奇数时,不论如何摆放都不可能整齐得把所有位置都摆好,此时f(n)=0
  • 当n为正偶数时,如果n>=2,先考虑将其最前面的2个空间摆好,按照上文中的分析有3种摆法,然后问题可归为子问题,即有3*f(n-2)种摆法
  • 如果n>=4,再考虑将其前面的4个空间摆好(并且只按上文分析中n=4时新加的两种方式摆放骨牌),按照上文的分析有2中摆法,然后问题可归为子问题,即又有2*f(n-4)种摆法
  • 继续判断n>=6,如果成立,则考虑将其前面的6个空间摆好(并且只按上文分析中n=6时新加的两种方式摆放骨牌),按照上文的分析有2中摆法,然后问题可归为子问题,即又有2*f(n-6)种摆法
  • 以此类推,直到所有的n长度都按最特殊的摆法摆放,可以有f(n) = 3 * f(n-2) + 2 * f(n-4) + 2 * f(n-6) + … 2 * f(0)
  • 特殊的,我们有f(0)=1,即没有空间可摆放骨牌时,其整齐的解决摆放方案有1种(就是什么都不放)

至此,我们有以下递归式:

f(n) =

1,0,3f(n2)+2f(n4)+2f(n6)+...+2f(0),if n = 0if n < 0 or n is oddotherwise

有了公式之后,我们就可以编程实现了。编程实现上,看起来问题不大,然而,如果我们使用常规递归方式实现的话,问题很大。例如,题目中给出的测试数据是62247088,如果我们使用递归方法来实现代码的话,其调用过程大概如下,f(62247088)先调用f(62247086),f(62247086)中又调用f(62247084),f(62247084)中又调用f(62247082)……,这个过程中程序要不停的压栈,实在是难以想象。事实上,我一开始代码就是这么写的,程序跑了一会儿之后,我的小破本儿竟然直接黑屏重启了 : (

该如何优化代码呢?

传统的递归过程是f(n)调用f(n-1),f(n-2)…,我们何不尝试反过来求解呢?先求f(2),然后是f(4),然后是f(6),直到求出f(n)为止。

另外,我们还可以发现如下规律:

  • f(n) = 3 * f(n-2) + 2 * f(n-4) + … + 2 * f(0)
  • f(n+2) = 3 * f(n) + 2 * f(n-2) + 2 * f(n-4) + … + 2 * f(0)
  • f(n+4) = 3 * f(n+2) + 2 * f(n) + 2 * f(n-2) + 2 * f(n-4) + … + 2 * f(0)

因此我们可以利用在计算f(n)时的数据来计算f(n+2),f(n+4)…这样我们优雅的解决了两个问题:第一,不用递归调用函数来求解子问题;第二,不用开辟一个O(n)的空间来存储子问题的值。

最后,不要忘记对结果取模(MOD 12357)

代码

#include <stdio.h>int main() {int n;scanf("%d", &n);        // 输入数据if (n & 1 || n < 0) {   // 如果是奇数或者负数,输出0printf("0\n");} else if (n == 0) {      // 如果是0,输出1printf("1\n");} else {// sum存储f(i),last存储f(i-2),lastSum存储2*(f(i-4)+f(i-6)+...+f(0))// 初始化值i=2,last=f(i-2)=f(0)=1,lastSum=0int i = 2, sum, last = 1, lastSum = 0;// 循环计算f(i),直到f(n)for (; i <= n; i += 2) {// 计算f(i),f(i)=3*f(i-2)+2*(f(i-4)+f(i-6)+...+f(0))sum = 3 * last + lastSum;   sum %= 12357;       // 取模// 更新lastSum,即2*f(i-2)+2*(f(i-4)+f(i-6)+...+f(0))lastSum += 2 * last;    lastSum %= 12357;   // 取模// 更新last,即last=f(i),以备计算f(i+2)时使用last = sum;}printf("%d\n", sum);    // 输出}return 0;
}

hihocoder平台代码提交 ACCEPT
时间:1520ms
内存:0MB


个人学习记录,如有错误请指正
// sfg1991@163.com
// 2015-04-20

这篇关于【hiho一下 第四十二周】骨牌覆盖问题·二的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/601380

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

k8s容器放开锁内存限制问题

《k8s容器放开锁内存限制问题》nccl-test容器运行mpirun时因NCCL_BUFFSIZE过大导致OOM,需通过修改docker服务配置文件,将LimitMEMLOCK设为infinity并... 目录问题问题确认放开容器max locked memory限制总结参考:https://Access

Java中字符编码问题的解决方法详解

《Java中字符编码问题的解决方法详解》在日常Java开发中,字符编码问题是一个非常常见却又特别容易踩坑的地方,这篇文章就带你一步一步看清楚字符编码的来龙去脉,并结合可运行的代码,看看如何在Java项... 目录前言背景:为什么会出现编码问题常见场景分析控制台输出乱码文件读写乱码数据库存取乱码解决方案统一使