使用 EmbeddingBag 和 Embedding 完成词嵌入

2024-01-13 11:36

本文主要是介绍使用 EmbeddingBag 和 Embedding 完成词嵌入,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🍨 本文为[🔗365天深度学习训练营学习记录博客\n🍦 参考文章:365天深度学习训练营\n🍖 原作者:[K同学啊 | 接辅导、项目定制]\n🚀 文章来源:[K同学的学习圈子](https://www.yuque.com/mingtian-fkmxf/zxwb45)

使用 EmbeddingBagEmbedding 完成词嵌入,首先需要处理文档中的文本,将其转换为适合进行词嵌入的格式,涉及到以下步骤:

  1. 文本清洗:移除文档中的特殊字符和标点符号,将文本统一为小写(如果适用)。
  2. 分词:将文本分割成单词或标记(tokens)。
  3. 建立词汇表:从分词后的文本中创建一个词汇表,每个唯一的单词对应一个索引。
  4. 文本向量化:将文本转换为数字形式,以便进行嵌入处理。

第二步,使用 EmbeddingBagEmbedding 层进行词嵌入。EmbeddingBag 层适用于处理变长的文本,它会计算所有嵌入向量的平均值或和。而 Embedding 层适用于单个单词或固定长度的序列。

目标文件:

实现代码: 

from collections import Counter
import torch
import torch.nn as nn
import re# 清洗文本并进行分词
def tokenize(text):# 移除特殊字符和标点,并转换为小写text = re.sub(r'[^\w\s]', '', text).lower()# 分词return text.split()# 创建词汇表
def create_vocab(text_tokens):vocab = Counter(text_tokens)vocab = sorted(vocab, key=vocab.get, reverse=True)vocab_to_int = {word: ii for ii, word in enumerate(vocab, 1)} # 索引从1开始return vocab_to_int# 将文本转换为数字形式
def text_to_int(tokens, vocab_to_int):return [vocab_to_int[word] for word in tokens if word in vocab_to_int]# 定义Embedding和EmbeddingBag层
def define_embedding_layers(vocab_size, embedding_dim=100):embedding = nn.Embedding(num_embeddings=vocab_size, embedding_dim=embedding_dim)embedding_bag = nn.EmbeddingBag(num_embeddings=vocab_size, embedding_dim=embedding_dim, mode='mean')return embedding, embedding_bag# 读取文件内容
file_path = 'D:/任务文件 (1).txt'
with open(file_path, 'r', encoding='utf-8') as file:file_content = file.read()# 文本清洗和分词
tokens = tokenize(file_content)# 创建词汇表
vocab_to_int = create_vocab(tokens)# 将文本转换为数字形式
int_text = text_to_int(tokens, vocab_to_int)# 定义嵌入层参数
embedding_dim = 100
vocab_size = len(vocab_to_int) + 1# 定义Embedding和EmbeddingBag层
embedding, embedding_bag = define_embedding_layers(vocab_size, embedding_dim)# 转换为tensor以供嵌入层使用
input_tensor = torch.tensor([int_text], dtype=torch.long)# 使用Embedding和EmbeddingBag进行词嵌入
embedded = embedding(input_tensor)
embedded_bag = embedding_bag(input_tensor)# 打印结果
print("Embedding shape:", embedded.shape)
print("EmbeddingBag shape:", embedded_bag.shape)

这篇关于使用 EmbeddingBag 和 Embedding 完成词嵌入的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/601321

相关文章

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca