机器学习降维技术全面对比评析

2024-01-13 07:20

本文主要是介绍机器学习降维技术全面对比评析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

在机器学习领域,处理高维数据带来了与计算效率、模型复杂性和过度拟合相关的挑战。降维技术提供了一种解决方案,将数据转换为低维表示,同时保留基本信息。本文旨在比较和对比一些突出的降维技术,涵盖线性和非线性方法。

alt

线性技术

主成分分析(PCA)

  • 线性投影:PCA 执行线性投影以捕获数据中的最大方差。
  • 计算效率:高效且广泛使用,但假设线性关系。

线性判别分析 (LDA)

  • 有监督的降维:LDA 结合了类别信息来找到最好地分离类别的线性组合。
  • 分类重点:对于分类任务特别有用。

随机投影

  • 计算简单性:随机投影提供了一种计算有效的降维方法。
  • 近似保留:虽然计算效率高,但它仅提供成对距离的近似保留。

非线形技术

t-Distributed Stochastic Neighbor Embedding (t-SNE)

  • 非线性嵌入:t-SNE 对于在低维空间中可视化高维数据非常有效。
  • 计算成本:计算成本昂贵,限制了其在大型数据集中的使用。

Uniform Manifold Approximation and Projection (UMAP)

  • 效率:UMAP 的计算效率比 t-SNE 更高,使其适用于更大的数据集。
  • 全局和局部保留:有效保留数据中的局部和全局结构。

自动编码器

  • 神经网络方法:自动编码器使用神经网络来学习高维空间和低维空间之间的非线性映射。
  • 表示学习:能够学习分层表示,但可能对超参数敏感。

Isomap(等轴测图)

  • 测地距离的保留:Isomap 专注于保留测地距离,捕获数据的内在几何形状。
  • 对噪声的敏感性:对噪声和异常值敏感,需要仔细的预处理。

局部线性嵌入 (LLE)

  • 本地关系:LLE 专注于保留数据点之间的本地关系。
  • 参数敏感性:对邻居的选择敏感,并且可能难以保存全局结构。

Code

下面是一个完整的 Python 代码,使用流行的 scikit-learn 库将各种降维技术应用于 Iris 数据集,并用绘图可视化结果。确保您的 Python 环境中安装了 scikit-learn 和 matplotlib:

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
from sklearn.manifold import TSNE
from sklearn.manifold import Isomap
from sklearn.manifold import LocallyLinearEmbedding
from sklearn.manifold import MDS
from sklearn.manifold import SpectralEmbedding
from umap import UMAP
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPClassifier

# Load Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# Standardize the data
X_std = StandardScaler().fit_transform(X)

# Define dimensionality reduction techniques
methods = [
    ('PCA', PCA(n_components=2)),
    ('LDA', LDA(n_components=2)),
    ('t-SNE', TSNE(n_components=2)),
    ('Isomap', Isomap(n_components=2)),
    ('LLE', LocallyLinearEmbedding(n_components=2)),
    ('MDS', MDS(n_components=2)),
    ('Spectral Embedding', SpectralEmbedding(n_components=2)),
    ('UMAP', UMAP(n_components=2)),
]

# Apply dimensionality reduction and plot results
plt.figure(figsize=(1510))
for i, (name, model) in enumerate(methods, 1):
    plt.subplot(33, i)
    
    # Modified part for LDA
    if name == 'LDA':
        reduced_data = model.fit_transform(X_std, y)
    else:
        reduced_data = model.fit_transform(X_std)
    
    plt.scatter(reduced_data[:, 0], reduced_data[:, 1], c=y, cmap=plt.cm.Set1, edgecolor='k', s=40)
    plt.title(name)
    plt.xlabel('Component 1')
    plt.ylabel('Component 2')

plt.tight_layout()
plt.show()

此代码片段在 Iris 数据集上使用 PCA、LDA、t-SNE、Isomap、LLE、MDS、Spectral Embedding 和 UMAP 等降维技术,并绘制降维后的数据。您可以在缩小的空间中观察每种技术的不同聚类。请随意尝试其他数据集或根据您的具体需求修改代码。

alt

总结

总之,降维技术的选择取决于数据的具体特征和分析的目标。 PCA 和 LDA 等线性方法简单高效,但可能难以处理非线性关系。 t-SNE 和 UMAP 等非线性技术擅长捕获复杂结构,但也带来计算挑战。自动编码器提供了一种灵活的基于神经网络的方法,Isomap 和 LLE 等方法专注于保留特定的几何方面。了解每种技术的优点和局限性对于为给定数据集和任务选择最合适的方法至关重要,从而确保机器学习应用程序获得最佳结果。

本文由 mdnice 多平台发布

这篇关于机器学习降维技术全面对比评析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/600654

相关文章

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Java实现本地缓存的四种方法实现与对比

《Java实现本地缓存的四种方法实现与对比》本地缓存的优点就是速度非常快,没有网络消耗,本地缓存比如caffine,guavacache这些都是比较常用的,下面我们来看看这四种缓存的具体实现吧... 目录1、HashMap2、Guava Cache3、Caffeine4、Encache本地缓存比如 caff

Python中高级文本模式匹配与查找技术指南

《Python中高级文本模式匹配与查找技术指南》文本处理是编程世界的永恒主题,而模式匹配则是文本处理的基石,本文将深度剖析PythonCookbook中的核心匹配技术,并结合实际工程案例展示其应用,希... 目录引言一、基础工具:字符串方法与序列匹配二、正则表达式:模式匹配的瑞士军刀2.1 re模块核心AP

Python 字符串裁切与提取全面且实用的解决方案

《Python字符串裁切与提取全面且实用的解决方案》本文梳理了Python字符串处理方法,涵盖基础切片、split/partition分割、正则匹配及结构化数据解析(如BeautifulSoup、j... 目录python 字符串裁切与提取的完整指南 基础切片方法1. 使用切片操作符[start:end]2

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

SpringBoot加载profile全面解析

《SpringBoot加载profile全面解析》SpringBoot的Profile机制通过多配置文件和注解实现环境隔离,支持开发、测试、生产等不同环境的灵活配置切换,无需修改代码,关键点包括配置文... 目录题目详细答案什么是 Profile配置 Profile使用application-{profil

Python自定义异常的全面指南(入门到实践)

《Python自定义异常的全面指南(入门到实践)》想象你正在开发一个银行系统,用户转账时余额不足,如果直接抛出ValueError,调用方很难区分是金额格式错误还是余额不足,这正是Python自定义异... 目录引言:为什么需要自定义异常一、异常基础:先搞懂python的异常体系1.1 异常是什么?1.2

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比