d2l动手学深度学习】 Lesson 13 Dropout层 老板随机丢掉一些做项目的程序员‍,项目的效果会更好!(bushi)

本文主要是介绍d2l动手学深度学习】 Lesson 13 Dropout层 老板随机丢掉一些做项目的程序员‍,项目的效果会更好!(bushi),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 什么是Dropout
    • 老板随机丢掉一些做项目的程序员🧑‍💻,项目的效果会更好!
  • 2. 代码实现(不用torch)
  • 3. 代码实现(使用torch)
  • 3. 调节实验
    • 3.1 老师上课所设置的dropout1, dropout2 = 0.2, 0.5
      • 动手实现版
      • 简介torch版
    • 3.2 dropout1, dropout2 = 0, 0
    • 3.3 dropout1, dropout2 = 1, 1(全部扔掉?🤔)
    • 3.4 dropout1, dropout2 = 0.9, 0.9(几乎全部扔掉?)
    • 3.5 dropout1, dropout2 = 0.6, 0.8
    • 3.5 dropout1, dropout2 = 0.8, 0.6
  • 4. 整理一些有趣的Q&A 🤔
    • dropout 随机为0?
    • 理解dropout
    • 可重复性问题
  • 写在最后


1. 什么是Dropout

老板随机丢掉一些做项目的程序员🧑‍💻,项目的效果会更好!

dropout图片来自讲课PPT

Dropout,顾名思义,就是丢弃,是在多层感知机(MLP)中经常用到的一种用于防止过拟合的一种训练技巧,如上图所示,就是在中间层将一些神经元变为0,然后输出

需要注意的是:在实作中并不会像上面这张图片这样直接删除神经元,而是通过生成一个含有0的Mask去和原来输入的结果作点积(维持输入形状不改变,被去掉的神经元对应的位置乘以0)

李沐老师还提到,Dropout也可以看成是另一种形式的正则化方法(Regulation),也可以用来防止模型过拟合


2. 代码实现(不用torch)

def dropout_layer(X, dropout):# input, dropout rateassert 0 <= dropout <= 1if dropout == 1:return torch.zeros_like(X) # 等于1变全0了 全丢了if dropout == 0:return X# 比较得到布尔矩阵mask = (torch.randn(X.shape) > dropout).float()# 做矩阵乘法比使用数组索引index的运算速度快 X[mask] = 0return mask * X /(1.0 - dropout)

3. 代码实现(使用torch)

net = nn.Sequential(nn.Flatten(),nn.Linear(784, 256),nn.ReLU(),nn.Dropout(dropout1),nn.Linear(256, 256),nn.ReLU(),nn.Dropout(dropout2),nn.Linear(256, 10))
def init_weights(m):if type(m) == nn.Linear:nn.init.normal_(m.weight, std=0.01)net.apply(init_weights)

模型结构

Sequential((0): Flatten(start_dim=1, end_dim=-1)(1): Linear(in_features=784, out_features=256, bias=True)(2): ReLU()(3): Dropout(p=0.0, inplace=False)(4): Linear(in_features=256, out_features=256, bias=True)(5): ReLU()(6): Dropout(p=0.0, inplace=False)(7): Linear(in_features=256, out_features=10, bias=True)
)

3. 调节实验

老师的代码主要用到了两个Dropout层,因此在模型中对应两个dropout rate,👇下面我们主要对者两个参数进行调节并观察对应的实验结果。dropout rate 后面将简写为(DR)

⚠️注意!!:在运行代码时候,记得修改loss = nn.CrossEntropyLoss(reduction='none'),里面reduction,不然显示不出来loss!

3.1 老师上课所设置的dropout1, dropout2 = 0.2, 0.5

动手实现版

动手实现版

简介torch版

在这里插入图片描述

两种版本的实现的训练效果都差不多(这里假设没有其他优化计算的因素影响模型最后的训练效果),接下来我们就用简洁Torch版本来讨论。

3.2 dropout1, dropout2 = 0, 0

在这里插入图片描述

不用dropout的模型准确率反而上升了?
弹幕里面说是因为有可能模型是过拟合的,因为这里的Loss变的非常小
李沐老师说,现在256是一个很大的模型(对于我们这个小的MNIST数据集来说

3.3 dropout1, dropout2 = 1, 1(全部扔掉?🤔)

报错🙅,这个是运行不了的
在这里插入图片描述

3.4 dropout1, dropout2 = 0.9, 0.9(几乎全部扔掉?)

在这里插入图片描述
这个也会出现很问题

3.5 dropout1, dropout2 = 0.6, 0.8

在这里插入图片描述

3.5 dropout1, dropout2 = 0.8, 0.6

在这里插入图片描述

这里推测之前运行不了的原因也有可能是第一层的神经网络扔得太多了


综上所述,不管怎么调节dropout rate,还是比不过不用drop的策略,有可能模型还是不够大,应该出现overfitting的情况再使用dropout策略会好一点?


4. 整理一些有趣的Q&A 🤔

dropout 随机为0?

  • 在求梯度时,设置随机为0,在BackProp的时候对应的梯度也是0,所以为啥Hinton说Dropout更像是在训练的过程中,将一些小网络逐一拿出来(不同的子网络),将各个子网络完成训练以后再融和在一起

理解dropout

  • DR太小了,和太大了都不合适,太小没有作用,相反,太大就变成限制模型参数拟合的性能发挥 没有正确性🙆可言,一般就只有正确率
  • 在作模型推理的时候,不需要使用Drop,因为不会再改变模型参数,如果用也可以,就会引入一些随机性,需要多算几遍,预测会丢掉东西,第一次是猫🐱,第二次可能就是狗🐶
  • Drop在MLP全连接层用的比较多,但是weight decay则全部都在用,包括CNN,RNN这些

可重复性问题

  • 神经网络训练的可重复性确实是一个问题,不过可以通过把random seed设定
  • 但是李沐老师提到一个问题🙋,就是使用加速⏩CUDA中的Cudnn的话可能会导致计算结果不能🔁重复,这是因为并行计算的加法问题,100个数相加的先后顺序不同的话,得到的结果也会不同(精度不够),想重复的话需要固定住CuDNN
  • 随机性会使得整个神经网络的收敛域变的平滑
  • 每个batch丢进去之后,都要丢弃一次
  • 老师,dropout每次随机选几个子网络,最后做平均的做法是不是类似于随机森林多决策树做投票的这种思想?(是的)
  • 深度学习:我需要模型够强,但是我需要通过正则化来保证不要学偏

写在最后

各位看官,都看到这里了,麻烦动动手指头给博主来个点赞8,您的支持作者最大的创作动力哟!
才疏学浅,若有纰漏,恳请斧正
本文章仅用于各位作为学习交流之用,不作任何商业用途,若涉及版权问题请速与作者联系,望悉知

这篇关于d2l动手学深度学习】 Lesson 13 Dropout层 老板随机丢掉一些做项目的程序员‍,项目的效果会更好!(bushi)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/600231

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca

Debian 13升级后网络转发等功能异常怎么办? 并非错误而是管理机制变更

《Debian13升级后网络转发等功能异常怎么办?并非错误而是管理机制变更》很多朋友反馈,更新到Debian13后网络转发等功能异常,这并非BUG而是Debian13Trixie调整... 日前 Debian 13 Trixie 发布后已经有众多网友升级到新版本,只不过升级后发现某些功能存在异常,例如网络转

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程