poj 2135 Farm Tour 最小费用流 spfa优化 16_05_14

2024-01-13 02:48

本文主要是介绍poj 2135 Farm Tour 最小费用流 spfa优化 16_05_14,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://poj.org/problem?id=2135
题意:给你n个节点,中间连接有m条边,每条边有一定的权值,求两种1号节点走到n号节点没有公共边的走法中
总的权值最小的走法,输出这个最小值;

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <map>
#include <algorithm>
#include <set>
using namespace std;
#define MM(a) memset(a,0,sizeof(a))
typedef long long ll;
typedef unsigned long long ULL;
const int mod = 1000000007;
const double eps = 1e-10;
const int inf = 0x3f3f3f3f;
const int big=50000;
int max(int a,int b) {return a>b?a:b;};
int min(int a,int b) {return a<b?a:b;};
const int N = 500;
const int M=20000;
struct edge{
int to,cap,cost,rev;
};
vector<edge> G[1005];
int dist[1005],inq[1005],prev[1005],prel[1005];
int n,m,x,y,c;
void add_edge(int u,int v,int cost)
{
G[u].push_back(edge{v,1,cost,G[v].size()});
G[v].push_back(edge{u,0,-cost,G[u].size()-1});
//cout<<u<<" "<<G[u].size()<<endl;
}
int mincost(int s,int t,int f)
{
int ans=0;
while(f>0)
{
memset(dist,inf,sizeof(dist));
memset(inq,0,sizeof(inq));
dist[s]=0;
queue<int> q;
q.push(s);
inq[s]=1;
while(!q.empty())
{
int u=q.front();
q.pop();inq[u]=0;
for(int j=0;j<G[u].size();j++)
{
edge &e=G[u][j];
if(e.cap>0&&dist[e.to]>dist[u]+e.cost)
{
dist[e.to]=dist[u]+e.cost;
prev[e.to]=u;
prel[e.to]=j;
if(!inq[e.to])
{
q.push(e.to);
inq[e.to]=1;
}
}
}
}
for(int i=t;i>s;)
{
int f=prev[i];
int j=prel[i];
G[f][j].cap-=1;
G[i][G[f][j].rev].cap+=1;
ans+=G[f][j].cost;
i=prev[i];
}
f-=1;
}
return ans;
}
int main()
{
while(~scanf("%d %d",&n,&m))
{
for(int i=1;i<=m;i++)
{
scanf("%d %d %d",&x,&y,&c);
add_edge(x,y,c);
add_edge(y,x,c);
}
printf("%d\n",mincost(1,n,2));
}
return 0;
}


上面是SPFA,下面是朴素的bellman 

   
  • #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cstdlib>
    #include <cmath>
    #include <vector>
    #include <queue>
    #include <map>
    #include <algorithm>
    #include <set>
    using namespace std;
    #define MM(a) memset(a,0,sizeof(a))
    typedef long long ll;
    typedef unsigned long long ULL;
    const int mod = 1000000007;
    const double eps = 1e-10;
    const int inf = 0x3f3f3f3f;
    const int big=50000;
    int max(int a,int b) {return a>b?a:b;};
    int min(int a,int b) {return a<b?a:b;};
    const int N = 500;
    const int M=20000;
    struct edge{
    int to,cap,cost,rev;
    };
    vector<edge> G[1005];
    int dist[1005],inq[1005],prev[1005],prel[1005];
    int n,m,x,y,c;
    void add_edge(int u,int v,int cost)
    {
    G[u].push_back(edge{v,1,cost,G[v].size()});
    G[v].push_back(edge{u,0,-cost,G[u].size()-1});
    //cout<<u<<" "<<G[u].size()<<endl;
    }
    int mincost(int s,int t,int f)
    {
    int ans=0;
    while(f>0)
    {
    memset(dist,inf,sizeof(dist));
    dist[s]=0;
    bool update=true;
    while(update)
    {
    update=false;
    for(int u=1;u<n;u++)
    for(int j=0;j<G[u].size();j++)
    {
    edge &e=G[u][j];
    if(e.cap>0&&dist[e.to]>dist[u]+e.cost)
    {
    dist[e.to]=dist[u]+e.cost;
    prev[e.to]=u;
    prel[e.to]=j;
    update=true;
    //cout<<"4"<<endl;
    }
    }
    }
    for(int i=t;i>s;)
    {
    int f=prev[i];
    int j=prel[i];
    G[f][j].cap-=1;
    G[i][G[f][j].rev].cap+=1;
    ans+=G[f][j].cost;
    i=prev[i];
    }
    f-=1;
    }
    return ans;
    }
    int main()
    {
    while(~scanf("%d %d",&n,&m))
    {
    for(int i=1;i<=m;i++)
    {
    scanf("%d %d %d",&x,&y,&c);
    add_edge(x,y,c);
    add_edge(y,x,c);
    }
    printf("%d\n",mincost(1,n,2));
    }
    return 0;
    }


分析:两条路不能有任意一条公共边,就决定了这道题目只能用流量为2的最小费用流,而不是最短路

下面是wa的代码:注意边的连接:无向路

   
  •      
    • #include <iostream>
      #include <cstdio>
      #include <cstring>
      #include <cstdlib>
      #include <cmath>
      #include <vector>
      #include <queue>
      #include <map>
      #include <algorithm>
      #include <set>
      using namespace std;
      #define MM(a) memset(a,0,sizeof(a))
      typedef long long ll;
      typedef unsigned long long ULL;
      const int mod = 1000000007;
      const double eps = 1e-10;
      const int inf = 0x3f3f3f3f;
      const int big=50000;
      int max(int a,int b) {return a>b?a:b;};
      int min(int a,int b) {return a<b?a:b;};
      const int N = 500;
      const int M=20000;
      struct edge{
      int to,cap,cost,rev;
      };
      vector<edge> G[1005];
      int dist[1005],inq[1005],prev[1005],prel[1005];
      int n,m,x,y,c;
      void add_edge(int u,int v,int cost)
      {
      G[u].push_back(edge{v,1,cost,G[v].size()});
      G[v].push_back(edge{u,0,-cost,G[u].size()-1});
      //cout<<u<<" "<<G[u].size()<<endl;
      }
      int mincost(int s,int t,int f)
      {
      int ans=0;
      while(f>0)
      {
      memset(dist,inf,sizeof(dist));
      dist[s]=0;
      bool update=true;
      while(update)
      {
      update=false;
      for(int u=1;u<n;u++)
      for(int j=0;j<G[u].size();j++)
      {
      edge &e=G[u][j];
      if(e.cap>0&&dist[e.to]>dist[u]+e.cost)
      {
      dist[e.to]=dist[u]+e.cost;
      prev[e.to]=u;
      prel[e.to]=j;
      update=true;
      //cout<<"4"<<endl;
      }
      }
      }
      for(int i=t;i>s;)
      {
      int f=prev[i];
      int j=prel[i];
      G[f][j].cap-=1;
      G[i][G[f][j].rev].cap+=1;
      ans+=G[f][j].cost;
      i=prev[i];
      }
      f-=1;
      }
      return ans;
      }
      int main()
      {
      while(~scanf("%d %d",&n,&m))
      {
      for(int i=1;i<=m;i++)
      {
      scanf("%d %d %d",&x,&y,&c);
      add_edge(x,y,c);
      add_edge(y,x,c);
      }
      printf("%d\n",mincost(1,n,2));
      }
      return 0;
      }



这篇关于poj 2135 Farm Tour 最小费用流 spfa优化 16_05_14的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/599997

相关文章

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

SpringBoot利用树形结构优化查询速度

《SpringBoot利用树形结构优化查询速度》这篇文章主要为大家详细介绍了SpringBoot利用树形结构优化查询速度,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一个真实的性能灾难传统方案为什么这么慢N+1查询灾难性能测试数据对比核心解决方案:一次查询 + O(n)算法解决

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、