C++(9.5)——浅谈new和delete的实现原理

2024-01-13 02:20

本文主要是介绍C++(9.5)——浅谈new和delete的实现原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

(注:本文是针对上篇文章中C++内存管理的两个关键字new,delete)两个关键字原理的解析,对于这两个关键字的使用并没有什么影响,如果只想得知两个关键字的使用方法,则可以直接跳过本篇文章)

目录

1. 引入:

2.operator new 与 operator delete:

2.1 基本定义以及与操作符的差异:

2.2 为什么要引入operator new和operator delete:

3. 操作符的大致动作过程:

3.1 开辟单个空间的动作过程:

3.2 开辟多个空间的动作过程:


1. 引入:

为了方便说明两个关键字的实现原理,首先引入一个简单的栈,具体代码如下:

#include<iostream>
using namespace std;class Stack
{
public:Stack(int capacity = 4){cout << "Stack( int capacity = 4)" << endl;_a = new int[capacity];_capacity = capacity;_top = _capacity;}~Stack(){cout << "~Stack()" << endl;delete[]_a;_a = nullptr;_top = 0;_capacity = 0;}
private:int* _a;int _top;int _capacity;
};
int main()
{Stack s1;return 0;
}

运行代码,结果显示调用了一次构造函数和一次析构函数:

对于下方给出的代码,即:

Stack* s2 = new Stack;delete s2;

       整体的运行顺序为:利用关键字new开辟一个类型为自定义类型Stack的空间,大小为12字节。此后,由自定义类型的构造函数可知,再利用关键字new为指针变量_a开辟空间。因此,第一行代码整体开辟了两次空间。第一次是new自身开辟空间,第二次是new针对自定义类型会去调用自定义类型的构造函数,在构造函数中,再开辟一次空间。

    对于第二行代码中的关键字delete。首先需要调用析构函数,析构函数的作用并非像free一样释放掉开辟的空间,而是释放掉空间中的资源,也就是指针变量_a指向的空间。在调用完析构函数后,再去释放空间。此处可以看出来,针对自定义类型,在释放空间时,并不能区调用free。因为free并不会处理指针变量_a中已经开辟的空间。因此会导致内存泄漏。

    由上面的例子和上篇文章引入关键字使用方法的例子可以了解,new针对内置类型与malloc并没有差异,针对自定义类型,newmalloc多了一步调用默认构造函数。对于delete,针对内置类型与free也没有差异,针对自定义类型,多了一步在释放空间之前调用一次析构函数。所以,这两个关键字可以看作对malloc\, \, \, free的加强。对于这两个关键字开辟空间或者释放空间的功能的原理,是借助operator \, \, \, \, new,operator\, \, \, delete完成的。需要注意,上面给出的是两个全局函数,并非运算符重载。下面将针对这两个全局函数进行解析。

2.operator new 与 operator delete:

2.1 基本定义以及与操作符的差异:

      operator\, \, newoperator \, \, delete并不是运算符重载,而是两个全局函数,对于operator,其运用方式与malloc基本相同,operator \, \, deletefree的调用方式也基本相同。二者与前面的操作符new ,delete在运行中也有一定的差距,例如:

Stack* s2 = new Stack;delete s2;Stack* s3 = (Stack*)operator new(sizeof(Stack));operator delete(s3);

运行后结果如下:

不难发现,两个全局函数只能开辟空间,并不能像操作符一样调用构造函数或者析构函数。

对于这两个全局函数,具体代码如下:
(注:对于下方给出的代码在此阶段并不需要知道具体含义,在文章的后面,需要引用其中某行代码时,会给出相应的解析)

void *__CRTDECL operator new(size_t size) _THROW1(_STD bad_alloc)
{
void *p;
while ((p = malloc(size)) == 0)if (_callnewh(size) == 0){static const std::bad_alloc nomem;_RAISE(nomem);}
return (p);
}
void operator delete(void *pUserData)
{_CrtMemBlockHeader * pHead;RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));if (pUserData == NULL)return;_mlock(_HEAP_LOCK);  __TRYpHead = pHdr(pUserData);_ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));_free_dbg( pUserData, pHead->nBlockUse );__FINALLY_munlock(_HEAP_LOCK); __END_TRY_FINALLYreturn;
}#define   free(p)               _free_dbg(p, _NORMAL_BLOCK)

 通过上面给定代码中的其中两行,即:

while ((p = malloc(size)) == 0)
_free_dbg( pUserData, pHead->nBlockUse );

       不难看出,operator \, \, newoperator\, \, \, delete这两个函数可以看作是对mallocfree这两个函数的封装。而对于为什么C++要对malloc,free进行一次封装再使用,而不直接使用,将在下一小节进行简要说明。

2.2 为什么要引入operator new和operator delete:

     若调用malloc开辟空间失败,则一般会返回0。但是,在C++中,面向对象的编程并不能在失败用返回值进行处理,而是需要抛异常,对malloc,free进行封装,正是为了解决这个问题

(注:对于抛异常等相关内容将会在后续的文章中给出,在此阶段只需要这个概念即可)

    在上面给出的代码中,虽然具体内容并不能了解清楚,但是对于下面的代码,即:

void *p;
while ((p = malloc(size)) == 0)if (_callnewh(size) == 0){// report no memory// 如果申请内存失败了,这里会抛出bad_alloc 类型异常static const std::bad_alloc nomem;_RAISE(nomem);}

       在介绍malloc时就提到,当成功的开辟空间后,返回值会返回这块空间的起始地址。因此,上述代码的大体意思为:检查malloc的返回值,如果返回值判断等于0,则说明没有成功的开辟 地址,下面就进行抛异常。对于free的封装大致意思也相同,此处不再过多介绍。

3. 操作符的大致动作过程:

3.1 开辟单个空间的动作过程:

    前面简单介绍了两个全局函数operator\, \, newoperator\, \, delete。本部分将介绍操作符new的大致动作过程。

(注:为了清楚的了解new的动作过程,需要通过汇编进行查看,本部分并不需要了解汇编代码,只是借用其中的几行来大体说明动作过程,并且针对借用的代码给出解析)

   对于下面给出的代码:

Stack* s2 = new Stack;

转为汇编形式,即为:

在上面的指令中,可以找到较为熟悉的两行指令,即:

       二者分别对应了操作符new的两个动作,即:调用函数operator\, \, new开辟空间,调用构造函数对空间进行初始化。 对于操作符delete同理,其汇编指令如下:

其中,红色框框出来的两行分别为:调用析构函数与调用operator\, \, delete释放空间。 

3.2 开辟多个空间的动作过程:

给定代码如下:

Stack* s4 = new Stack[10];delete[]s4;

将上述代码转为汇编形式,涉及到的指令如下:

        可以看到,大致的运行过程是先调用指令operator\, \, \, new[],下一步直接会转到operator\, \, new[size]。其中的size表示开辟空间的大小。
 

这篇关于C++(9.5)——浅谈new和delete的实现原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/599934

相关文章

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

Conda虚拟环境的复制和迁移的四种方法实现

《Conda虚拟环境的复制和迁移的四种方法实现》本文主要介绍了Conda虚拟环境的复制和迁移的四种方法实现,包括requirements.txt,environment.yml,conda-pack,... 目录在本机复制Conda虚拟环境相同操作系统之间复制环境方法一:requirements.txt方法

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3