挑选富集分析结果 enrichments

2024-01-12 23:36

本文主要是介绍挑选富集分析结果 enrichments,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 


#2.2挑选term---selected_clusterenrich=enrichmets[grepl(pattern = "cilium|matrix|excular|BMP|inflamm|development|muscle|vaso|pulmonary|alveoli",x = enrichmets$Description),]head(selected_clusterenrich) distinct(selected_clusterenrich)# remove duplicate rows based on Description 并且保留其他所有变量
distinct_df <- distinct(enrichmets, Description,.keep_all = TRUE)library(ggplot2)
ggplot( distinct_df %>%dplyr::filter(stringr::str_detect(pattern = "cilium|matrix|excular|BMP|inflamm|development|muscle",Description))  %>%group_by(Description) %>%add_count()  %>%dplyr::arrange(dplyr::desc(n),dplyr::desc(Description)) %>%mutate(Description =forcats:: fct_inorder(Description)), #fibri|matrix|collaaes(Cluster, Description)) +geom_point(aes(fill=p.adjust, size=Count), shape=21)+theme_bw()+theme(axis.text.x=element_text(angle=90,hjust = 1,vjust=0.5),axis.text.y=element_text(size = 12),axis.text = element_text(color = 'black', size = 12))+scale_fill_gradient(low="red",high="blue")+labs(x=NULL,y=NULL)
# coord_flip()head(enrichmets)ggplot( distinct(enrichmets,Description,.keep_all=TRUE)  %>% #  dplyr::mutate(Cluster = factor(Cluster, levels = unique(.$Cluster))) %>%dplyr::mutate(Description = factor(Description, levels = unique(.$Description))) %>%#  dplyr::group_by(Cluster)  %>%dplyr::filter(stringr::str_detect(pattern = "cilium organization|motile cilium|cilium movemen|cilium assembly|cell-matrix adhesion|extracellular matrix organization|regulation of acute inflammatory response to antigenic stimulus|collagen-containing extracellular matrix|negative regulation of BMP signaling pathway|extracellular matrix structural constituent|extracellular matrix binding|fibroblast proliferation|collagen biosynthetic process|collagen trimer|fibrillar collagen trimer|inflammatory response to antigenic stimulus|chemokine activity|chemokine production|cell chemotaxis|chemoattractant activity|NLRP3 inflammasome complex assembly|inflammatory response to wounding|Wnt signaling pathway|response to oxidative stress|regulation of vascular associated smooth muscle cell proliferation|venous blood vessel development|regulation of developmental growth|lung alveolus development|myofibril assembly|blood vessel diameter maintenance|gas transport|cell maturation|regionalization|oxygen carrier activity|oxygen binding|vascular associated smooth muscle cell proliferation",Description))     %>%#  group_by(Description) %>%add_count()  %>%dplyr::arrange(dplyr::desc(n),dplyr::desc(Description))  %>%mutate(Description =forcats:: fct_inorder(Description)), #fibri|matrix|collaaes(Cluster, y = Description)) +  #stringr:: str_wrapgeom_point(aes(fill=p.adjust, size=Count), shape=21)+theme_bw()+theme(axis.text.x=element_text(angle=90,hjust = 1,vjust=0.5),axis.text.y=element_text(size = 12),axis.text = element_text(color = 'black', size = 12))+scale_fill_gradient(low="red",high="blue")+labs(x=NULL,y=NULL)
# coord_flip()
print(getwd())p=ggplot( distinct(enrichmets,Description,.keep_all=TRUE)  %>%dplyr::mutate(Description = factor(Description, levels = unique(.$Description))) %>%  #调整terms显示顺序dplyr::filter(stringr::str_detect(pattern = "cilium organization|motile cilium|cilium movemen|cilium assembly|cell-matrix adhesion|extracellular matrix organization|regulation of acute inflammatory response to antigenic stimulus|collagen-containing extracellular matrix|negative regulation of BMP signaling pathway|extracellular matrix structural constituent|extracellular matrix binding|fibroblast proliferation|collagen biosynthetic process|collagen trimer|fibrillar collagen trimer|inflammatory response to antigenic stimulus|chemokine activity|chemokine production|cell chemotaxis|chemoattractant activity|NLRP3 inflammasome complex assembly|inflammatory response to wounding|Wnt signaling pathway|response to oxidative stress|regulation of vascular associated smooth muscle cell proliferation|venous blood vessel development|regulation of developmental growth|lung alveolus development|myofibril assembly|blood vessel diameter maintenance|gas transport|cell maturation|regionalization|oxygen carrier activity|oxygen binding|vascular associated smooth muscle cell proliferation",Description))  %>%group_by(Description) %>%add_count()  %>%dplyr::arrange(dplyr::desc(n),dplyr::desc(Description)) %>%mutate(Description =forcats:: fct_inorder(Description)), #fibri|matrix|collaaes(Cluster, y = Description)) +  #stringr:: str_wrap#scale_y_discrete(labels = function(x) stringr::str_wrap(x, width = 60)) +  #调整terms长度geom_point(aes(fill=p.adjust, size=Count), shape=21)+theme_bw()+theme(axis.text.x=element_text(angle=90,hjust = 1,vjust=0.5),axis.text.y=element_text(size = 12),axis.text = element_text(color = 'black', size = 12))+scale_fill_gradient(low="red",high="blue")+labs(x=NULL,y=NULL)
# coord_flip()
print(getwd())ggsave(filename ="~/silicosis/spatial/sp_cluster_rigions_after_harmony/enrichents12.pdf",plot = p,width = 10,height = 12,limitsize = FALSE)######展示term内所有基因,用热图展示-------#提取画图的数据p$data#提取图形中的所有基因-----
mygenes=  p$data $geneID %>% stringr::str_split(.,"/",simplify = TRUE)  %>%as.vector()   %>%unique()
frame_for_genes=p$data %>%as.data.frame() %>% dplyr::group_by(Cluster)  #后面使用split的话,必须按照分组排序
head(frame_for_genes)my_genelist=  split(frame_for_genes, frame_for_genes$Cluster, drop = TRUE)  %>%  #注意drop参数的理解lapply(function(x) select(x, geneID));my_genelistmy_genelist=  split(frame_for_genes, frame_for_genes$Cluster, drop = TRUE)  %>%  #注意drop参数的理解lapply(function(x) x$geneID);my_genelistmygenes=my_genelist %>% lapply( function(x)  {stringr::str_split(x,"/",simplify = TRUE)  %>%as.vector()   %>%unique()}   )#准备画热图,加载seurat对象
load("/home/data/t040413/silicosis/spatial_transcriptomics/silicosis_ST_harmony_SCT_r0.5.rds")
{dim(d.all)DefaultAssay(d.all)="Spatial"#visium_slides=SplitObject(object = d.all,split.by = "stim")names(d.all);dim(d.all)d.all@meta.data %>%head()head(colnames(d.all))#1 给d.all 添加meta信息------adata_obs=read.csv("~/silicosis/spatial/adata_obs.csv")head(adata_obs)mymeta=  paste0(d.all@meta.data$orig.ident,"_",colnames(d.all))  %>% gsub("-.*","",.)  # %>%  head()head(mymeta)tail(mymeta)#掉-及其之后内容adata_obs$col= adata_obs$spot_id %>% gsub("-.*","",.)    # %>%  head()head(adata_obs)rownames(adata_obs)=adata_obs$coladata_obs=adata_obs[mymeta,]head(adata_obs)identical(mymeta,adata_obs$col)d.all=AddMetaData(d.all,metadata = adata_obs)head(d.all@meta.data)}##构建画热图对象---
Idents(d.all)=d.all$clusters
a=AverageExpression(d.all,return.seurat = TRUE)
a$orig.ident=rownames(a@meta.data)
head(a@meta.data)
head(markers)rownames(a) %>%head()
head(mygenes)
table(mygenes %in% rownames(a))
DoHeatmap(a,draw.lines = FALSE, slot = 'scale.data', group.by = 'orig.ident',features = mygenes ) + ggplot2:: scale_color_discrete(name = "Identity", labels =  unique(a$orig.ident) %>%sort()  )##doheatmap做出来的图不好调整,换成heatmap自己调整p=DoHeatmap(a,draw.lines = FALSE, slot = 'scale.data', group.by = 'orig.ident',features = mygenes ) + ggplot2:: scale_color_discrete( labels =  unique(a$orig.ident) %>%sort()  ) #name = "Identity",p$data %>%head()##########这种方式容易出现bug,不建议------
if (F) {wide_data <- p$data %>% .[,-4] %>%tidyr:: pivot_wider(names_from = Cell, values_from = Expression)print(wide_data)  mydata=  wide_data %>%dplyr:: select(-Feature) %>%as.matrix()head(mydata)rownames(mydata)=wide_data$Featuremydata=mydata[,c("Bronchial zone", "Fibrogenic zone",   "Interstitial zone",  "Inflammatory zone","Vascular zone"  )]p2=pheatmap::  pheatmap(mydata, fontsize_row = 2, clustering_method = "ward.D2",#     annotation_col = wide_data$Feature,annotation_colors = c("Interstitial zone" = "red", "Bronchial zone" = "blue", "Fibrogenic zone" = "green", "Vascular zone" = "purple") ,cluster_cols = FALSE,column_order = c("Inflammatory zone", "Vascular zone"  ,"Bronchial zone", "Fibrogenic zone"   ))getwd()ggplot2::ggsave(filename = "~/silicosis/spatial/sp_cluster_rigions_after_harmony/heatmap_usingpheatmap.pdf",width = 8,height = 10,limitsize = FALSE,plot = p2)}##########建议如下方式画热图------
a$orig.ident=a@meta.data %>%rownames()
a@meta.data %>%head()
Idents(a)=a$orig.identa@assays$Spatial@scale.data  %>%head()mydata=a@assays$Spatial@scale.data
mydata=mydata[rownames(mydata) %in% (mygenes %>%unlist() %>%unique()) ,]
mydata= mydata[,c( "Fibrogenic zone",  "Inflammatory zone",   "Bronchial zone","Interstitial zone","Vascular zone"  )]
head(mydata)
p3=pheatmap::  pheatmap(mydata, fontsize_row = 2,  clustering_method = "ward.D2",#     annotation_col = wide_data$Feature,annotation_colors = c("Interstitial zone" = "red", "Bronchial zone" = "blue", "Fibrogenic zone" = "green", "Vascular zone" = "purple") ,cluster_cols = FALSE,column_order = c("Inflammatory zone", "Vascular zone"  ,"Bronchial zone", "Fibrogenic zone"   )
)getwd()
ggplot2::ggsave(filename = "~/silicosis/spatial/sp_cluster_rigions_after_harmony/heatmap_usingpheatmap2.pdf",width = 8,height = 10,limitsize = FALSE,plot = p3)#########单独画出炎症区和纤维化区---------
a@assays$Spatial@scale.data  %>%head()mydata=a@assays$Spatial@scale.data
mygenes2= my_genelist[c('Inflammatory zone','Fibrogenic zone')] %>%  unlist() %>% stringr::str_split("/",simplify = TRUE) mydata2=mydata[rownames(mydata) %in% ( mygenes2 %>%unlist() %>%unique()) ,]
mydata2= mydata2[,c( "Fibrogenic zone",  "Inflammatory zone" )]
head(mydata2)p3=pheatmap::  pheatmap(mydata2, fontsize_row = 5,  #scale = 'row',clustering_method = "ward.D2",#     annotation_col = wide_data$Feature,annotation_colors = c("Interstitial zone" = "red", "Bronchial zone" = "blue", "Fibrogenic zone" = "green", "Vascular zone" = "purple") ,cluster_cols = FALSE,column_order = c("Inflammatory zone", "Vascular zone"  ,"Bronchial zone", "Fibrogenic zone"   )
)getwd()
ggplot2::ggsave(filename = "~/silicosis/spatial/sp_cluster_rigions_after_harmony/heatmap_usingpheatmap3.pdf",width = 4,height = 8,limitsize = FALSE,plot = p3)

这篇关于挑选富集分析结果 enrichments的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/599534

相关文章

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1