【网络安全】【密码学】【北京航空航天大学】实验三、数论基础(下)【C语言实现】

本文主要是介绍【网络安全】【密码学】【北京航空航天大学】实验三、数论基础(下)【C语言实现】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

实验三、数论基础(下)

一、实验内容

1、中国剩余定理(Chinese Remainder Theorem)

(1)、算法原理

m1, m2, … mk 是一组两两互素的正整数,且 M = m1 · m2 · … · mk 为它们的乘积, 则如下的同余方程组:
x == a1 (mod m1)
x == a2 (mod m2)

x == ak (mod mk)

对于模M有唯一的解 x = (M · e1 · a1 / m1 + M · e2 · a2 / m2 + … + M · ek · ak / mk) (mod M)
其中 ei 满足 M / mi · ei == 1(mod mi)

(2)、算法流程

本算法的大致流程如下图所示:

在这里插入图片描述

(3)、算法的代码实现(C语言)

#include <stdio.h>int reverse(int k, int m);  // 函数,返回k模m的逆元int main()
{int i;int r;       // 方程组中的方程个数 (不能超过100)int b[100];  // 余数数组int m[100];  // 模数数组int mul = 1;int M[100];  // M数组int M1[100];  // M'数组int x = 0;  // 方程组的根//	printf("%d", reverse(3, 7));  // 一行测试代码printf("请输入方程的个数:");scanf_s("%d", &r);  // 选用安全的输入函数,避免可能的栈溢出(攻击)printf("请输入 %d 个余数,之间以空格分隔:", r);for(i = 0;i < r;i ++){scanf("%d", &b[i]);}printf("请输入 %d 个模数,之间以空格分隔:", r);for(i = 0;i < r;i ++){scanf("%d", &m[i]);mul *= m[i];}for(i = 0;i < r;i ++){M[i] = mul / m[i];}for(i = 0;i < r;i ++){M1[i] = reverse(M[i], m[i]);}for(i = 0;i < r;i ++){x += M1[i] * M[i] * b[i];}x %= mul;printf("此同余方程组的解(模%d)是:", mul);printf("%d", x);return 0;
}int reverse(int k, int m)
{int i;for(int i = 1;i < m;i ++){if(k * i % m == 1){return i;}}return -1;
}

(4)、算法测试

测试点1:

x == 1 (mod 4)
x == 2 (mod 5)
x == 3 (mod 7)

运行时截图:

在这里插入图片描述
解为 x == 17 (mod 140)

测试点2:

x == 7 (mod 23)
x == 9 (mod 28)
x == 16 (mod 33)

运行时截图:

在这里插入图片描述

解为 x == 19189 (mod 21252)

测试点3:

x == 23 (mod 283)
x == 28 (mod 102)
x == 33 (mod 35)

运行时截图:
在这里插入图片描述

解为 x == 43888 (mod 1010310)

2、素性检测算法(Miller-Rabin’s Test for Primality)

(1)、算法原理
根据费马小定理,设 p素数a整数,且满足 (a, p) = 1, 则满足 a ^ (p - 1) = 1 (mod p), 以及二次探测定理:如果 p 是一个素数,且 0 < x < p, 且同余方程 x ^ 2 = 1 (mod p) 成立,那么 x = 1x = p - 1米勒·拉宾 Miller-Rabin 素性检测算法是基于以上两个定理的随机化算法,用于判断一个整数是合数还是素数。

(2)、算法流程

本算法的大致流程如下图所示:

在这里插入图片描述

(3)、算法的代码实现(C语言)

#include <stdio.h>
#include <stdlib.h>typedef long long unsigned LLU;
typedef int BOOL;#define TRUE 1
#define FALSE 0// 长整数快速模乘算法
LLU quickMult(LLU a, LLU b, LLU c)
{LLU result = 0;while(b > 0) {if(b & 1)result = (result + a) % c;a = (a + a) % c;b >>= 1;}return result;
}// 长整数快速幂取模算法
LLU quickPower(LLU a, LLU b, LLU c) 
{LLU result = 1;while(b > 0) {if(b & 1)result = quickMult(result, a, c);a = quickMult(a, a, c);b >>= 1;}return result;
}// 米勒·拉宾素性检验算法(单次测试)
BOOL MillerRabinPrimeTest(LLU n) 
{LLU d, x, newX, a = 1;int i;for (i = 0; i < 4; i ++)a *= rand();a = a % (n - 3) + 2;  // 随机地选取一个a∈[2,n-2]int s = 0;  // s为d中的因子2的幂次数。d = n - 1;while ((d & 1) == 0) {   // 将d中的因子2全部提取出来。s ++;d >>= 1;}x = quickPower(a, d, n);for (i = 0; i < s; i ++) { // 进行s次二次探测newX = quickPower(x, 2, n);if (newX == 1 && x != 1 && x != n - 1)return FALSE;  // 用二次定理的逆否命题,此时n被确定为合数。x = newX; }if (x != 1)return FALSE;  // 用费马小定理的逆否命题判断,此时x=a^(n-1) (mod n),那么n确定为合数。return TRUE; //用费马小定理的逆命题判断。能经受住考验至此的数,大概率为素数。
}//经过连续特定次数的Miller-Rabin测试后,
//如果返回值为TRUE表示n为素数,返回值为FALSE表示n为合数。
BOOL isPrimeByMR(LLU n) 
{if((n & 1) == 0)return FALSE;int i;for (i = 0; i < 100; i ++)if(MillerRabinPrimeTest(n) == FALSE)return FALSE;return TRUE;
}// 主函数
int main()
{LLU n;printf("请输入待判断素性的整数:");scanf("%lld", &n);BOOL result;result = isPrimeByMR(n);printf("\n------判断中......------\n\n");if(result == TRUE)printf("%llu 是素数", n);elseprintf("%llu 是合数", n);return 0;
}

(4)、算法测试

测试点1:
判断1000023是素数还是合数。(答:合数

运行时截图:

在这里插入图片描述

测试点2:
判断1000033是素数还是合数。(答:素数

运行时截图:

在这里插入图片描述
测试点3:
判断100160063是素数还是合数。(答:合数

运行时截图:

在这里插入图片描述测试点4:
判断1500450271是素数还是合数。(答:素数

运行时截图:

在这里插入图片描述

说明:算法为概率性判断,即可能将合数错判为素数(对计算机来说,已在极短的时间内完成了100次重复的MR测试,故该错判的概率极低),但绝无可能将素数错判为合数。

二、参考文献

1、《密码编码学与网络安全——原理与实践(第七版)》(Cryptography and Network Security, Principles and Practice, Seventh Edition),【美】威廉 斯托林斯 William Stallings 著,王后珍等 译,北京,电子工业出版社,2017年12月。

2、《密码学实验教程》,郭华 刘建伟等 主编,北京,电子工业出版社,2021年1月。

这篇关于【网络安全】【密码学】【北京航空航天大学】实验三、数论基础(下)【C语言实现】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/598156

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too