<<数据结构>>向上调整建堆和向下调整建堆的分析(特殊情况,时间复杂度分析,两种建堆方法对比,动图)

本文主要是介绍<<数据结构>>向上调整建堆和向下调整建堆的分析(特殊情况,时间复杂度分析,两种建堆方法对比,动图),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天,我来讲讲建堆算法中使用向上调整和向下调整。



目录

    • 建堆的应用
    • 向上调整建堆
    • 向下调整建堆
    • 向下调整建堆和向上调整建堆的选择



建堆的应用

在数据结构模拟堆中,我们可能会通过输入数组的元素来进行建堆或者在堆排序中,我们也需要建堆,那么建堆就有两种方法,一种从倒数第二层最右侧的父节点开始进行向下调整,直到把所有父节点都向下调整完;另外一种是从最后一个结点开始向上调整,直到每个结点都进行一次向上调整。

物理结构:实实在在在内存中是如何存储的
逻辑结构:想象出来的结构

如下面有一个数组,物理结构和逻辑结构分别如下:
在这里插入图片描述
如上面数组的逻辑结构,即不满足大堆,也不满足小堆,那么我们就应该进行建堆。假设要建大堆。

接下来,我来依次进行向上调整建堆和向下调整建堆。



向上调整建堆

如上面所说,我们需要找到最后一个结点,进行向上调整,如下
在这里插入图片描述
这个为向上调整建堆的第一趟,接下来,将倒数第二个结点继续建堆,即43,持续下去,直到把所有的结点都进行了向上调整,那么就完成了建堆的任务。

但是这样调整真的可以吗?
下面是代码:

int swap(int* a, int* b)
{int tmp = *a;*a = *b;*b = tmp;
}
Build_BigHeap(int* arr,int n)
{                                   //错误示范for (int i = n - 1; i >= 0; i--)//从最后一个结点开始,保证每个结点都能向上调整{int child = i;int parent = (child - 1) / 2;while (child > 0)              //单趟向上调整{if (arr[child] > arr[parent]){swap(&arr[child],&arr[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}}
}
int main()
{int arr[] = {12,19,5,25,36,10,3,30,15,2,14,20,30,43,30};Build_BigHeap(arr,sizeof(arr)/sizeof(arr[0]));return 0;
}

建堆前:
在这里插入图片描述

建堆后:
在这里插入图片描述

观察可以发现,在我们建堆后的逻辑结构,大部分结点都满足了大堆的要求,即父节点大于、等于孩子结点,但是有一个父结点的值小于孩子结点,是哪个呢?就是19和25,这就奇怪了,其他结点都满足大堆的要求,为什么偏偏有两个结点不满足大堆的要求呢?不着急,我要画个小动图分析一下。

由于上面的问题由第八趟向上调整导致,我就不从第一趟排序画到问题出现的地方了,因为其他的几趟的向上调整并不是影响该问题的出现的因素。但是由于前面的调整没画,此次的第八趟向上调整与从第一次向上调整画到第八趟的向上调整结果有些不同,但是并不影响,因为我们主要分析的是19和25位置的原因所在。

在这里插入图片描述

上面就是25出现在了19后面的原因,所以我们最开始选择最后一个元素来进行向上调整,接着依次往上找结点进行向上调整的方法存在着小bug,比如第八趟向上调整中,将25调到了最后面的一层,然后,程序就继续去向上调整数字3的位置了,却不知道25还需要与19进行调整。

那么,我应该如何改进这个bug呢,我们直接选择从第二个结点开始,也就是下标为1的位置进行向上调整,接下来,程序依次调整到最后一个结点的位置,那么就不会有问题了。

代码如下:

int swap(int* a, int* b)
{int tmp = *a;*a = *b;*b = tmp;
}
Build_BigHeap(int* arr,int n)
{for (int i = 1; i <= n - 1; i++)//从第二个结点开始调整,保证每个结点都能向上调整{int child = i;int parent = (child - 1) / 2;while (child > 0)              //单趟向上调整{if (arr[child] > arr[parent]){swap(&arr[child],&arr[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}}
}
int main()
{int arr[] = { 12,19,5,25,36,10,3,30,15,2,14,20,30,43,30 };Build_BigHeap(arr, sizeof(arr) / sizeof(arr[0]));return 0;
}

建堆前
在这里插入图片描述

建堆后
在这里插入图片描述

现在,该向上调整建堆的代码就满足要求了。

向上调整建堆的时间复杂度

假设最坏的情况下,每个结点都需要向上调整
在这里插入图片描述
由二叉树的性质可以得知,每层结点的个数是2^(h-1),在第几层的结点如果需要调整的话,最多需要向上调整h-1次。

那么,调整次数将与高度相关,如下
在这里插入图片描述



向下调整建堆

在向下调整建堆中,我们需要找到最后一个父节点,将该父节点与他的孩子结点进行比较,如果需要交换就进行交换,接下来,继续拿其他的父节点进行相同的比较,直到把所有的父节点比较完成,那么向下调整建堆就完成了。

假设我们需要建大堆,那么我们就先找到最后一个父结点,选出该父结点两个孩子结点中最大的那个结点,将该最大的孩子结点与父节点进行交换,这样就满足了大堆的要求了。

如下:第一趟向下调整的动图
在这里插入图片描述
由该动图可以得知,该替换后的父节点与他的孩子结点就满足了大堆的要求了,接下来,继续往前调整,直到把所有的父节点调整完,那么整个就满足了大堆了要求了。

我再举一个调整例子吧,我并没有一步一步调整上去,而是直接调整5结点,方便大家理解代码,所以下图的10结点还没有调整。
在这里插入图片描述

代码如下:

int swap(int* a, int* b)
{int tmp = *a;*a = *b;*b = tmp;
}
Build_BigHeap(int* arr, int n)
{for (int i = (n - 1 - 1) / 2; i >= 0; i--)//从最后一个父节点结点开始调整,保证每个父结点都能向下调整{int parent = i;int child = parent * 2 + 1;while (child < n)              //单趟向下调整{if (arr[child + 1] && arr[child + 1] > arr[child]){child++;}if (arr[child] > arr[parent]){swap(&arr[child], &arr[parent]);parent = child;child = parent * 2 + 1;}else{break;}}}
}
int main()
{int arr[] = { 12,19,5,25,36,10,3,30,15,2,14,20,30,43,30 };Build_BigHeap(arr, sizeof(arr) / sizeof(arr[0]));return 0;
}

建堆前:
在这里插入图片描述

建堆后:
在这里插入图片描述

向下调整建堆的时间复杂度

假设在最坏的情况下,所有的结点都需要向下调整。
在这里插入图片描述
那么时间复杂度的计算如下:
在这里插入图片描述



向下调整建堆和向上调整建堆的选择

向上调整建堆的时间复杂度是:O(N*logN)
向下调整建堆的时间复杂度是:O(N)
所以,大多数都会选择向下调整建堆。



如果觉得写得不错,可不可以动动小手,三连支持一下。

这篇关于<<数据结构>>向上调整建堆和向下调整建堆的分析(特殊情况,时间复杂度分析,两种建堆方法对比,动图)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/597213

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

JavaScript对象转数组的三种方法实现

《JavaScript对象转数组的三种方法实现》本文介绍了在JavaScript中将对象转换为数组的三种实用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录方法1:使用Object.keys()和Array.map()方法2:使用Object.entr