Leetcod面试经典150题刷题记录 —— 数学篇

2024-01-12 07:28

本文主要是介绍Leetcod面试经典150题刷题记录 —— 数学篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Leetcode面试经典150题刷题记录-系列
Leetcod面试经典150题刷题记录——数组 / 字符串篇
Leetcod面试经典150题刷题记录 —— 双指针篇
Leetcod面试经典150题刷题记录 —— 矩阵篇
Leetcod面试经典150题刷题记录 —— 滑动窗口篇
Leetcod面试经典150题刷题记录 —— 哈希表篇
Leetcod面试经典150题刷题记录 —— 区间篇
Leetcod面试经典150题刷题记录——栈篇
Leetcod面试经典150题刷题记录——链表篇
Leetcod面试经典150题刷题记录——二叉树篇
Leetcod面试经典150题刷题记录——二叉树层次遍历篇
Leetcod面试经典150题刷题记录——二叉搜索树篇

Leetcod面试经典150题刷题记录 —— 数学篇

    • 1. 回文数
      • 解法1 字符串解法
      • 解法2 官方解法
    • 2. 加一
    • 3. 阶乘后的零
      • 解法1
      • 解法2 考虑 [1,n] 中质因子 p 的个数。
    • 4. x 的平方根 (扩展了解 快速平方根算法)
    • 5. Pow(x,n)
    • 6. 直线上最多的点数

1. 回文数

题目链接:回文数 - leetcode
题目描述:
给你一个整数 x ,如果 x 是一个回文整数,返回 true ;否则,返回 false 。回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。例如,121 是回文,而 123 不是。
题目归纳:

解题思路:
解法: 回文数 - leetcode官方题解
(1)转换成字符串进行求解。比较原始字符串与反转字符串。
(2)将数字的每一位存储至一个双向队列中,依次比较队头和栈顶元素:回文数 - Pensive Albattanicrq题解
(3)官方题解。上面两种方式都要完整遍历整个数字的位数,而官方题解只需要遍历到其中一半的位置,并且从空间使用效率上来说更高效。时间复杂度是 O ( l o g n ) O(logn) O(logn) n n n是数字的大小, l o g n logn logn是指数字总共有几位,这应该不难理解。

解法1 字符串解法

class Solution:def isPalindrome(self, x: int) -> bool:mylist = list(str(x))while len(mylist) > 1:if mylist.pop(0) != mylist.pop():return Falsereturn True

解法2 官方解法

class Solution:def isPalindrome(self, x: int) -> bool:# 可以直接判断的特殊情况# (1)负数。不是回文数# (2)数值末尾为0,则开头也为0,那么只有0符合条件。if x < 0 or (x%10 == 0 and x != 0):return FalserevertX = 0while x > revertX:revertX = 10 * revertX + x % 10x //= 10# 位数为偶数个 or 位数为奇数个return x == revertX or revertX//10 == x

2. 加一

题目链接:加一 - leetcode
题目描述:
给定一个由 整数 组成的 非空 数组所表示的非负整数,在该数的基础上加一。最高位数字存放在数组的首位, 数组中每个元素只存储单个数字。你可以假设除了整数 0 之外,这个整数不会以零开头。
题目归纳:

解题思路:
解法: 加一 - leetcode官方题解

class Solution:def plusOne(self, digits: List[int]) -> List[int]:if len(digits) < 1: return [] # 空数组carry = 0 # 进位值digits = digits[::-1] # 翻转方便操作n = len(digits)p = 0while p < n:if p == 0: # 第1位数字要加1result = digits[0] + 1 + carrycarry = result // 10digits[0] = result % 10else:result = digits[p] + 0 + carrycarry = result // 10digits[p] = result % 10p += 1# 出来后若进位值carry仍大于0,数组需要append(carry)if carry > 0:digits.append(carry)return digits[::-1]

3. 阶乘后的零

题目链接:阶乘后的零 - leetcode
题目描述:
给定一个整数 n ,返回 n! 结果中尾随零的数量。提示 n! = n * (n - 1) * (n - 2) * ... * 3 * 2 * 1
题目归纳:

解题思路:
解法: 阶乘后的零 - leetcode官方题解
(1)因为 10 = 2 ∗ 5 10=2*5 10=25,求末尾0的个数,即是求 m i n ( 质因子 5 的个数 , 质因子 2 的个数 ) min(质因子5的个数, 质因子2的个数) min(质因子5的个数,质因子2的个数)
(2)再优化下,质因子 5 的个数不会大于质因子 2 的个数,

解法1

class Solution:def trailingZeroes(self, n: int) -> int:# 寻找阶乘的末尾有几个0# n! 尾0的个数即 n!中,因子10的个数,而10=2*5,因此转换成:求n!中质因子2的个数和质因子5的个数的较小值,即有多少个10参与了乘法,是由质因子2和5更小的那个数量来决定的# 质因子 5 的个数不会大于质因子 2 的个数# 而n!中质因子5的个数 = [1,n]的每个数的质因子5的个数之和,因此通过遍历[1,n]的所有5的倍数求出ans = 0for i in range(5, n+1, 5):while i%5 == 0: # (1)i要是5的倍数。i //= 5ans += 1    # (2)将i中质因子5的个数累加起来,比如25 = 5*5,两个质因数都为5return ans

解法2 考虑 [1,n] 中质因子 p 的个数。

class Solution:def trailingZeroes(self, n: int) -> int:# 仅考虑额外贡献的质因子个数 floor(n/p)# n 不变,p 越大,质因子个数越少,因此 [1,n] 中质因子 5 的个数不会大于质因子 2 的个数;ans = 0while n:n = n // 5ans += nreturn ans

4. x 的平方根 (扩展了解 快速平方根算法)

题目链接:x 的平方根 - leetcode
题目描述:
给你一个非负整数 x ,计算并返回 x 的 算术平方根 。由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5
题目归纳:
既然考察的是数学,那就请出牛顿提出的牛顿迭代法。这里可以拓展了解下 快速平方根倒数算法,还有那句著名的 what the xxxx?

解题思路:
解法: x 的平方根 - leetcode官方题解

class Solution:def mySqrt(self, x: int) -> int:# 牛顿迭代法if x == 0: return 0C, x0 = float(x), float(x)while True:xi = 0.5*(x0 + C/x0)if abs(x0 - xi) < 1e-7: # 两次求解的结果差距小于指定误差,可以返回return int(x0)x0 = xireturn int(x0)
参考文章或视频资料
【什么代码让程序员之神感叹“卧槽”?改变游戏行业的平方根倒数算法】- bilibili
【没那么神秘的快速平方根倒数,给你解释一下这个数是怎么来的】- bilibili

5. Pow(x,n)

题目链接:Pow(x,n) - leetcode
题目描述:
实现 pow(x, n) ,即计算 x 的整数 n 次幂函数(即,xn )。
题目归纳:
(1)常规思路。 x n = x ⋅ x ⋅ x ⋅ x . . . ⋅ x x^n = x · x · x · x \space\space ... \space\space· x xn=xxxx  ...  x,这样方便理解,但计算并不快速。
(2)快速幂运算思路。其实快速幂运算就像微信小程序里的召唤神龙游戏,回忆下,召唤神龙是3只蝌蚪合成1只青蛙3只青蛙合成1条鲤鱼 … … ,实际中你几乎不会真的拿9只蝌蚪来合成鲤鱼,而是遇到和自己一样大的动物就拉入自己的队伍,朝着更大型的动物合成迈进,这样的方式合并次数是最少的,直到 … … 召唤神龙。数学术语的描述具体可以看leetcode官方题解。

解题思路:
解法: Pow(x,n) - leetcode官方题解

class Solution:# 快速幂运算def quickMul(self, x: float, n: int) -> float:ans = 1.0while n > 0:if n & 1 == 1: # 末尾为1ans *= xx = x*x # x = x**2 反而会有问题n = n >> 1return ansdef myPow(self, x: float, n: int) -> float:if n >= 0:return self.quickMul(x, n)else:return 1.0 / self.quickMul(x, -n)

6. 直线上最多的点数

题目链接:直线上最多的点数 - leetcode
题目描述:
给你一个数组 points ,其中 points[i] = [xi, yi] 表示 X-Y 平面上的一个点。求最多有多少个点在同一条直线上。
题目归纳:
n n n个点,可以画出 n ( n − 1 ) 2 \frac{n(n-1)}{2} 2n(n1)条直线,如果再把每个点代入看是否符合该直线的方程,那时间复杂度将达到 O ( n 3 ) O(n^3) O(n3),这种算法绝对不可能被采用。
这里我插句题外话,这个算法只在平面上适用,比如说在《几何原本》中被奉为绝对真理的“两点确定一条直线”,在教科书上的表述并不是“两点只能确定一条直线”,因为在非欧几何中这个假设就不成立,若考虑地球是完美球体,那么地球的南极点到北极点有无数条经线,对于地球上的蚂蚁而言,这些经线毫无疑问就是其所处平面的直线,我们人类对宇宙的探索又何尝不是火鸡呢,谁知道两点之间有多少的连接可能性被空间本身的结构抛弃了。只做个人意见,如有错误请指正。
如果向量数据库采用的仍旧是占据主流的平面几何的学说,这是否符合大多数实际情况呢?会不会有些情况是需要用到非欧几何的呢?

解题思路:
解法: 直线上最多的点数 - leetcode官方题解

# 给一个数组points,其中,points[i] = [x_i, y_i]# 求,最多有多少个点在同一条直线上# 这道题对 向量数据库 应该非常重要,是向量数据库的基础算法,比如求向量之间的相似度与距离或者聚类# 可以考虑枚举所有point,假设直线经过该point时,该直线所能经过的最多的点数# 假设当前枚举到point{i},若直线同时经过另外两个不同的点j、k,那么(i,j)所在直线的斜率 = (i,k)所在直线的斜率# 于是,我们可以统计其它所有点与point{i}所连直线的斜率,出现次数最多的斜率,即为经过点数最多的斜率,其经过点数为 该斜率出现的次数+1(+1指point{i}自身)# 不采用浮点数记录斜率,因为精度可能不够,换用元组记录斜率的(分子,分母)的形式,这种记录形式可能有以下问题需要解决# (A) 两个元组:(1,2), (2,4)的斜率一致,所以还涉及到约分,即GCD最大公约数的求解# (B) 分子分母存在负数,(-1,2), (1,-2)的斜率一致,因此规定分母为非负整数,如果分母为负数,将二元组的两个数同时取反# (C) 直线为y=C或x=C时,传统的斜截式无法表达,采用特判法。# 再加以下4个小优化# (1)点的数量<=2,用一条直线将所有点串联,直接返回点的数量# (2)枚举到点i时,只考虑编号 >=i的点 与 点i之间的斜率,例如,编号小于点i的点j,当枚举到j自己的时候,就已经计算过点j与点i的斜率,即两点之间经过一条直线,不重复计算两次# (3)当找到的一条直线,已经经过了图中超过半数的点时,直接确定该直线为经过最多点的直线,然后继续按照该直线求点数# (4)当枚举到点i(编号从0开始)时,最多只能找到n-i个点共线,因为按优化(2),只考虑比自己编号大的。假设此前找到的共线的点数量最大值为k,如果有k>=n-i,此时即可停止枚举,因为不可能再找到更大的答案了。class Solution:def gcd(self, a, b): # 迭代法求最大公约数while b != 0:remain = a % b # 余数a = bb = remainreturn adef maxPoints(self, points: List[List[int]]) -> int:n = len(points)if n <= 2: # 优化(1)return nret = 0for i in range(n):if ret >= n-i or ret > (n/2): # 优化(4)与优化(3)breakmp = Counter()for j in range(i+1, n): # 优化(2),只考虑比自己编号大的点delta_x = points[i][0] - points[j][0] # △xdelta_y = points[i][1] - points[j][1] # △y# 对记录形式的优化(C)。特例判断if delta_x == 0:delta_y = 1elif delta_y == 0:delta_x = 1else:if delta_y < 0: # 对记录形式的优化(B)delta_x = -delta_xdelta_y = -delta_ygcdXY = self.gcd(abs(delta_x), abs(delta_y))delta_x = delta_x / gcdXYdelta_y = delta_y / gcdXYmp[str(delta_y + delta_x*20001)] += 1 # 看官方题解maxn = 0for k,v in mp.items():maxn = max(maxn, v+1)ret = max(ret, maxn)return ret

这篇关于Leetcod面试经典150题刷题记录 —— 数学篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/597181

相关文章

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)

《k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)》本文记录在K8s上运行的MySQL/MariaDB备份方案,通过工具容器执行mysqldump,结合定时任务实... 目录前言一、获取需要备份的数据库的信息二、备份步骤1.准备工作(X86)1.准备工作(arm)2.手

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

统一返回JsonResult踩坑的记录

《统一返回JsonResult踩坑的记录》:本文主要介绍统一返回JsonResult踩坑的记录,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录统一返回jsonResult踩坑定义了一个统一返回类在使用时,JsonResult没有get/set方法时响应总结统一返回

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

java对接海康摄像头的完整步骤记录

《java对接海康摄像头的完整步骤记录》在Java中调用海康威视摄像头通常需要使用海康威视提供的SDK,下面这篇文章主要给大家介绍了关于java对接海康摄像头的完整步骤,文中通过代码介绍的非常详细,需... 目录一、开发环境准备二、实现Java调用设备接口(一)加载动态链接库(二)结构体、接口重定义1.类型

apache的commons-pool2原理与使用实践记录

《apache的commons-pool2原理与使用实践记录》ApacheCommonsPool2是一个高效的对象池化框架,通过复用昂贵资源(如数据库连接、线程、网络连接)优化系统性能,这篇文章主... 目录一、核心原理与组件二、使用步骤详解(以数据库连接池为例)三、高级配置与优化四、典型应用场景五、注意事

SpringBoot实现文件记录日志及日志文件自动归档和压缩

《SpringBoot实现文件记录日志及日志文件自动归档和压缩》Logback是Java日志框架,通过Logger收集日志并经Appender输出至控制台、文件等,SpringBoot配置logbac... 目录1、什么是Logback2、SpringBoot实现文件记录日志,日志文件自动归档和压缩2.1、

qtcreater配置opencv遇到的坑及实践记录

《qtcreater配置opencv遇到的坑及实践记录》我配置opencv不管是按照网上的教程还是deepseek发现都有些问题,下面是我的配置方法以及实践成功的心得,感兴趣的朋友跟随小编一起看看吧... 目录电脑环境下载环境变量配置qmake加入外部库测试配置我配置opencv不管是按照网上的教程还是de