图片双线性插值原理解析与代码 Python

2024-01-12 00:36

本文主要是介绍图片双线性插值原理解析与代码 Python,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、原理解析

图片插值是图片操作中最常用的操作之一。为了详细解析其原理,本文以 3×3 图片插值到 5×5 图片为例进行解析。如上图左边蓝色方框是 5×5 的目标图片,右边红色方框是 3×3 的源图片。上图中,蓝/红色方框是图片,图片中的蓝/红色小圆点是图片中的像素,蓝/红色实线箭头是图片坐标系,蓝/红色虚线箭头是图片像素坐标系,从中可以发现图片框是要比最外圈像素所围成的像素框大一圈。图片插值指的是将右边红色方框放大到与左边蓝色方框同大,然后通过右边放大后的 3×3 的红色像素值计算得到左边的 5×5 的蓝色像素值。通常意义下所说的图片缩放或插值指的是两幅图片的图片框之间的关系而不是像素框之间的关系。基于图片框缩放,3×3 的图片要插值搭到 5×5 的图片,指的是红色方框从上图放大到下图的样子。

如果采用像素框缩放,那红色方框放大后,需要保证 3×3 的像素的四个角的像素位置与蓝色方框的 5×5 像素的四个角的像素位置完全重合,那放大后的红色方框要比上图的红色方框再大一小圈。基于图片框缩放,从上图中可以发现,当 3×3 的红色图片被插值到 5×5 的图片后,原本 3×3 的像素位置也会相应的发生缩放。

将参考辅助线调整后,如上左图所示,在完成缩放后,那图片插值的剩余过程就是通过红色像素值计算蓝色像素值。拿一个最左下角红色方格举例如上右图所示,已知四个红色像素点的位置和像素值,同样已知蓝色像素点 P 的位置,求 P 的像素值。

二维线性插值是图片插值中最常用的插值算法。二维线性插值的原理为,首先基于一维线性插值原理,通过 Q_{11} 和 Q_{12} 计算得到 R_{1} 的像素值,通过 Q_{21} 和 Q_{22} 计算得到 R_{2} 的像素值,然后通过 R_{1} 和 R_{2} 计算得到 P 的像素值。

通过 Q_{11} 和 Q_{12} 计算得到 R_{1} 的像素值的公式为(线性方程):

R_{1} = \frac{x_{p}-x_{2}}{x_{1}-x_{2}}Q_{11}+\frac{x_{1}-x_{p}}{x_{1}-x_{2}}Q_{12}

通过 Q_{21} 和 Q_{22} 计算得到 R_{2} 的像素值的公式为(线性方程):

R_{2} = \frac{x_{p}-x_{2}}{x_{1}-x_{2}}Q_{21}+\frac{x_{1}-x_{p}}{x_{1}-x_{2}}Q_{22}

通过 R_{1} 和 R_{2} 计算得到 P 的像素值的公式为(线性方程):

P = \frac{y_{p}-y_{2}}{y_{1}-y_{2}}R_{1}+\frac{y_{1}-y_{p}}{y_{1}-y_{2}}R_{2}

整理得到:

P = (1-u)(1-v)Q_{11} + (1-u)vQ_{12} + u(1-v)Q_{21} + uvQ_{22}

其中

u = x_{p} - x_{1}, v = y_{p} - y_{1}

这里需要特别说明的是,边界点的处理方法,如上右图的 S 点,其位于四个红色像素点以外,但由于其位于图片的最左下角边界上,其下面没有红色像素点,只有上面有两个像素点。但针对 S 点像素值的计算我们依然使用这四个红色像素点,相当于 S 点是 R_{1} 与 R_{2} 的直线段的延伸。

二、Python 代码

关于代码实现需要注意 3 个地方:

1. 上面原理讲的是从原图片像素坐标映射到目标图片像素坐标的过程,但实际编程一般采用从目标图片像素坐标映射到源图片像素坐标;

2. 在缩放比计算时注意,图片框缩放计算公式是 src_h/dst_h,但像素框缩放计算公式是 (src_h-1)/(dst_h-1);

3. 在图片边界处的处理为,需要保证所计算的左下角像素点坐标大于等于 0 且小于等于图片尺寸 -2,小于等于图片尺寸 -2 的原因是保证右上角像素点坐标小于等于图片尺寸 -1,边界处的像素点的计算依然需要最近邻的四个点。

import numpy as np
import cv2def bilinear(src_img, dst_shape):# 计算目标图片到原图片的缩放比,且是图片坐标系的缩放,不是像素坐标系的缩放,像素位于图像像素格的中心src_h, src_w = src_img.shape[0], src_img.shape[1]dst_h, dst_w = dst_shapescale_h, scale_w = src_h/dst_h, src_w/dst_w              # 如果是像素坐标系的缩放则应该为 (src_h-1)/(dst_h-1)# 定义目标图片并向其中填充像素值,遍历目标图片像中的每个像素点dst_img = np.zeros((dst_h, dst_w, 3), np.uint8)for i in range(dst_h):for j in range(dst_w):# 将 目标像素坐标系下的坐标 --> 目标图像坐标系下的坐标(+0.5) --> 源图像坐标系下的坐标(*scale) --> 源像素坐标系下的坐标(-0.5)src_x = (j + 0.5) * scale_w - 0.5src_y = (i + 0.5) * scale_h - 0.5# 在非边界情况下获取左下角图像像素点坐标,在左/下边界的情况下保证大于等于0,在右/上边界的情况下保证小于等于src-2,以保证计算时所用的右上角像素坐标小于等于src-1src_x_int = min(max(int(src_x), 0), src_w-2)src_y_int = min(max(int(src_y), 0), src_h-2)# 获取所求像素点相比左下角像素点的距离src_x_float = src_x - src_x_intsrc_y_float = src_y - src_y_int# 计算每个像素值dst_img[i, j, :] = (1. - src_y_float) * (1. - src_x_float) * src_img[src_y_int, src_x_int, :] + \(1. - src_y_float) * src_x_float * src_img[src_y_int, src_x_int + 1, :] + \src_y_float * (1. - src_x_float) * src_img[src_y_int + 1, src_x_int, :] + \src_y_float * src_x_float * src_img[src_y_int + 1, src_x_int + 1, :]return dst_imgif __name__ == "__main__":img_path = "test.jpg"src_img = cv2.imread(img_path, cv2.IMREAD_COLOR)dst_shape = (300, 400)# 图片放缩均采用双线性插值法# opencv的放缩图片函数resize_image = cv2.resize(src_img, (400, 300), interpolation=cv2.INTER_LINEAR)# 自定义的图片放缩函数dst_img = bilinear(src_img, dst_shape)cv2.imwrite("new_resize.jpg", resize_image)cv2.imwrite("new.jpg", dst_img)

这篇关于图片双线性插值原理解析与代码 Python的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/596227

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析