图片双线性插值原理解析与代码 Python

2024-01-12 00:36

本文主要是介绍图片双线性插值原理解析与代码 Python,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、原理解析

图片插值是图片操作中最常用的操作之一。为了详细解析其原理,本文以 3×3 图片插值到 5×5 图片为例进行解析。如上图左边蓝色方框是 5×5 的目标图片,右边红色方框是 3×3 的源图片。上图中,蓝/红色方框是图片,图片中的蓝/红色小圆点是图片中的像素,蓝/红色实线箭头是图片坐标系,蓝/红色虚线箭头是图片像素坐标系,从中可以发现图片框是要比最外圈像素所围成的像素框大一圈。图片插值指的是将右边红色方框放大到与左边蓝色方框同大,然后通过右边放大后的 3×3 的红色像素值计算得到左边的 5×5 的蓝色像素值。通常意义下所说的图片缩放或插值指的是两幅图片的图片框之间的关系而不是像素框之间的关系。基于图片框缩放,3×3 的图片要插值搭到 5×5 的图片,指的是红色方框从上图放大到下图的样子。

如果采用像素框缩放,那红色方框放大后,需要保证 3×3 的像素的四个角的像素位置与蓝色方框的 5×5 像素的四个角的像素位置完全重合,那放大后的红色方框要比上图的红色方框再大一小圈。基于图片框缩放,从上图中可以发现,当 3×3 的红色图片被插值到 5×5 的图片后,原本 3×3 的像素位置也会相应的发生缩放。

将参考辅助线调整后,如上左图所示,在完成缩放后,那图片插值的剩余过程就是通过红色像素值计算蓝色像素值。拿一个最左下角红色方格举例如上右图所示,已知四个红色像素点的位置和像素值,同样已知蓝色像素点 P 的位置,求 P 的像素值。

二维线性插值是图片插值中最常用的插值算法。二维线性插值的原理为,首先基于一维线性插值原理,通过 Q_{11} 和 Q_{12} 计算得到 R_{1} 的像素值,通过 Q_{21} 和 Q_{22} 计算得到 R_{2} 的像素值,然后通过 R_{1} 和 R_{2} 计算得到 P 的像素值。

通过 Q_{11} 和 Q_{12} 计算得到 R_{1} 的像素值的公式为(线性方程):

R_{1} = \frac{x_{p}-x_{2}}{x_{1}-x_{2}}Q_{11}+\frac{x_{1}-x_{p}}{x_{1}-x_{2}}Q_{12}

通过 Q_{21} 和 Q_{22} 计算得到 R_{2} 的像素值的公式为(线性方程):

R_{2} = \frac{x_{p}-x_{2}}{x_{1}-x_{2}}Q_{21}+\frac{x_{1}-x_{p}}{x_{1}-x_{2}}Q_{22}

通过 R_{1} 和 R_{2} 计算得到 P 的像素值的公式为(线性方程):

P = \frac{y_{p}-y_{2}}{y_{1}-y_{2}}R_{1}+\frac{y_{1}-y_{p}}{y_{1}-y_{2}}R_{2}

整理得到:

P = (1-u)(1-v)Q_{11} + (1-u)vQ_{12} + u(1-v)Q_{21} + uvQ_{22}

其中

u = x_{p} - x_{1}, v = y_{p} - y_{1}

这里需要特别说明的是,边界点的处理方法,如上右图的 S 点,其位于四个红色像素点以外,但由于其位于图片的最左下角边界上,其下面没有红色像素点,只有上面有两个像素点。但针对 S 点像素值的计算我们依然使用这四个红色像素点,相当于 S 点是 R_{1} 与 R_{2} 的直线段的延伸。

二、Python 代码

关于代码实现需要注意 3 个地方:

1. 上面原理讲的是从原图片像素坐标映射到目标图片像素坐标的过程,但实际编程一般采用从目标图片像素坐标映射到源图片像素坐标;

2. 在缩放比计算时注意,图片框缩放计算公式是 src_h/dst_h,但像素框缩放计算公式是 (src_h-1)/(dst_h-1);

3. 在图片边界处的处理为,需要保证所计算的左下角像素点坐标大于等于 0 且小于等于图片尺寸 -2,小于等于图片尺寸 -2 的原因是保证右上角像素点坐标小于等于图片尺寸 -1,边界处的像素点的计算依然需要最近邻的四个点。

import numpy as np
import cv2def bilinear(src_img, dst_shape):# 计算目标图片到原图片的缩放比,且是图片坐标系的缩放,不是像素坐标系的缩放,像素位于图像像素格的中心src_h, src_w = src_img.shape[0], src_img.shape[1]dst_h, dst_w = dst_shapescale_h, scale_w = src_h/dst_h, src_w/dst_w              # 如果是像素坐标系的缩放则应该为 (src_h-1)/(dst_h-1)# 定义目标图片并向其中填充像素值,遍历目标图片像中的每个像素点dst_img = np.zeros((dst_h, dst_w, 3), np.uint8)for i in range(dst_h):for j in range(dst_w):# 将 目标像素坐标系下的坐标 --> 目标图像坐标系下的坐标(+0.5) --> 源图像坐标系下的坐标(*scale) --> 源像素坐标系下的坐标(-0.5)src_x = (j + 0.5) * scale_w - 0.5src_y = (i + 0.5) * scale_h - 0.5# 在非边界情况下获取左下角图像像素点坐标,在左/下边界的情况下保证大于等于0,在右/上边界的情况下保证小于等于src-2,以保证计算时所用的右上角像素坐标小于等于src-1src_x_int = min(max(int(src_x), 0), src_w-2)src_y_int = min(max(int(src_y), 0), src_h-2)# 获取所求像素点相比左下角像素点的距离src_x_float = src_x - src_x_intsrc_y_float = src_y - src_y_int# 计算每个像素值dst_img[i, j, :] = (1. - src_y_float) * (1. - src_x_float) * src_img[src_y_int, src_x_int, :] + \(1. - src_y_float) * src_x_float * src_img[src_y_int, src_x_int + 1, :] + \src_y_float * (1. - src_x_float) * src_img[src_y_int + 1, src_x_int, :] + \src_y_float * src_x_float * src_img[src_y_int + 1, src_x_int + 1, :]return dst_imgif __name__ == "__main__":img_path = "test.jpg"src_img = cv2.imread(img_path, cv2.IMREAD_COLOR)dst_shape = (300, 400)# 图片放缩均采用双线性插值法# opencv的放缩图片函数resize_image = cv2.resize(src_img, (400, 300), interpolation=cv2.INTER_LINEAR)# 自定义的图片放缩函数dst_img = bilinear(src_img, dst_shape)cv2.imwrite("new_resize.jpg", resize_image)cv2.imwrite("new.jpg", dst_img)

这篇关于图片双线性插值原理解析与代码 Python的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/596227

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法