力扣LCR 166. 珠宝的最高价值(java 动态规划)

2024-01-11 23:52

本文主要是介绍力扣LCR 166. 珠宝的最高价值(java 动态规划),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Problem: LCR 166. 珠宝的最高价值

文章目录

  • 解题思路
  • 思路
  • 解题方法
  • 复杂度
  • Code

解题思路

在这里插入图片描述在这里插入图片描述

思路

改题目与本站64题实质上是一样的,该题目在64题的基础上将求取最小路径和改成了求取最大路径和。具体实现思路如下:

1.定义一个int类型的二维数组dp大小为给定矩阵frame的行数与列数。该数组用于记录每个当前阶段的最大路径和(也是本题目的最大价值)
2.动态转移方程为**dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]) + frame[i][j];**即当前位置(也可以记作阶段)最大值每次取出其上方,和左侧的较大值的一个与当前frame位置值作和;
3.由于dp数组中第一行与第一列无法直接执行动态转移方程,要对其初始化:第一行每个位置值为依次向右累加第一列每个位置值为依次向下累加
3.最后返回dp数组中的最后一个值即可。

解题方法

1.定义数组frame的行数rows与列数columns;并定义一个int变量temp用于记录累加和
2.定义并初始化int类型数组dp初始化为new int[rows][colunms]
3.初始化dp的第一行与第一列,在for循环中使temp依次累加当前第一行(列)位置的值,并赋值给当前dp数组位置;
4.从dp数组的第二行(索引为1)开始执行动态转移方程dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]) + frame[i][j];,最后返回dp[rows - 1][columns - 1];

复杂度

时间复杂度:

O ( M N ) O(MN) O(MN),其中 M M M为数组frame的行数, N N N为其列数

空间复杂度:

O ( M N ) O(MN) O(MN)

Code

class Solution {/*** The maximum path sum is obtained using dynamic programming** @param frame Given matrix* @return int*/public int jewelleryValue(int[][] frame) {int rows = frame.length;int columns = frame[0].length;int temp = 0;//Records the current maximum path sumint[][] dp = new int[rows][columns];//Handle the first row and columnfor (int i = 0; i < columns; ++i) {temp += frame[0][i];dp[0][i] = temp;}temp = 0;for (int j = 0; j < rows; ++j) {temp += frame[j][0];dp[j][0] = temp;}//Dynamic transfer equationfor (int i = 1; i < rows; ++i) {for (int j = 1; j < columns; ++j) {dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]) + frame[i][j];}}return dp[rows - 1][columns - 1];}
}

这篇关于力扣LCR 166. 珠宝的最高价值(java 动态规划)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/596127

相关文章

Java 实用工具类Spring 的 AnnotationUtils详解

《Java实用工具类Spring的AnnotationUtils详解》Spring框架提供了一个强大的注解工具类org.springframework.core.annotation.Annot... 目录前言一、AnnotationUtils 的常用方法二、常见应用场景三、与 JDK 原生注解 API 的

Java controller接口出入参时间序列化转换操作方法(两种)

《Javacontroller接口出入参时间序列化转换操作方法(两种)》:本文主要介绍Javacontroller接口出入参时间序列化转换操作方法,本文给大家列举两种简单方法,感兴趣的朋友一起看... 目录方式一、使用注解方式二、统一配置场景:在controller编写的接口,在前后端交互过程中一般都会涉及

Java中的StringBuilder之如何高效构建字符串

《Java中的StringBuilder之如何高效构建字符串》本文将深入浅出地介绍StringBuilder的使用方法、性能优势以及相关字符串处理技术,结合代码示例帮助读者更好地理解和应用,希望对大家... 目录关键点什么是 StringBuilder?为什么需要 StringBuilder?如何使用 St

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Java并发编程之如何优雅关闭钩子Shutdown Hook

《Java并发编程之如何优雅关闭钩子ShutdownHook》这篇文章主要为大家详细介绍了Java如何实现优雅关闭钩子ShutdownHook,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 目录关闭钩子简介关闭钩子应用场景数据库连接实战演示使用关闭钩子的注意事项开源框架中的关闭钩子机制1.

Maven中引入 springboot 相关依赖的方式(最新推荐)

《Maven中引入springboot相关依赖的方式(最新推荐)》:本文主要介绍Maven中引入springboot相关依赖的方式(最新推荐),本文给大家介绍的非常详细,对大家的学习或工作具有... 目录Maven中引入 springboot 相关依赖的方式1. 不使用版本管理(不推荐)2、使用版本管理(推

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll