342. 道路与航线(拓扑排序,Dijkstra综合应用)

2024-01-11 18:12

本文主要是介绍342. 道路与航线(拓扑排序,Dijkstra综合应用),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

342. 道路与航线 - AcWing题库

农夫约翰正在一个新的销售区域对他的牛奶销售方案进行调查。

他想把牛奶送到 T 个城镇,编号为 1∼T。

这些城镇之间通过 R 条道路 (编号为 1 到 R) 和 P 条航线 (编号为 1 到 P) 连接。

每条道路 i 或者航线 i 连接城镇 Ai 到 Bi,花费为 Ci。

对于道路,0≤Ci≤10,000;然而航线的花费很神奇,花费 Ci 可能是负数(−10,000≤Ci≤10,000)。

道路是双向的,可以从 Ai 到 Bi,也可以从 Bi 到 Ai,花费都是 Ci。

然而航线与之不同,只可以从 Ai 到 Bi。

事实上,由于最近恐怖主义太嚣张,为了社会和谐,出台了一些政策:保证如果有一条航线可以从 Ai 到 Bi,那么保证不可能通过一些道路和航线从 Bi 回到 Ai。

由于约翰的奶牛世界公认十分给力,他需要运送奶牛到每一个城镇。

他想找到从发送中心城镇 S 把奶牛送到每个城镇的最便宜的方案。

输入格式

第一行包含四个整数 T,R,P,S。

接下来 R 行,每行包含三个整数(表示一个道路)Ai,Bi,Ci。

接下来 P 行,每行包含三个整数(表示一条航线)Ai,Bi,Ci。

输出格式

第 1..T 行:第 i 行输出从 S 到达城镇 i 的最小花费,如果不存在,则输出 NO PATH

数据范围

1≤T≤25000
1≤R,P≤50000
1≤Ai,Bi,S≤T

输入样例:
6 3 3 4
1 2 5
3 4 5
5 6 10
3 5 -100
4 6 -100
1 3 -10
输出样例:
NO PATH
NO PATH
5
0
-95
-100

 解析:

由于题目说:保证如果有一条航线可以从 Ai 到 Bi,那么保证不可能通过一些道路和航线从 Bi 回到 Ai。

所以图中有路线和点组成的强连通分量,可以将每个强连通分量看作是一个点,每个点之间有航线(单向边)连接,且这个由强连通分量构成的图为拓扑图。

对于单源最短路问题:

1.如果一个图的边权非负,那么就可以使用 Dijkstra 算法,时间复杂度为 mlogn.

2.如果是拓扑图,不管边权是正是负,均可按照拓扑序扫描,时间复杂度是线性的

因此,可以想到,每个强连通分量内部我们可以使用 Dijkstra 算法,强连通分量之间我们可以使用拓扑排序。

算法实现:

1.先输入所有双向道路,然后dfs出所有连通块,计算两个数组:id[] 存储每个点属于哪个连通块;vector<int>block[]存储每个连通块里有哪些点;

2.输入所有航线,同时统计出每个连通块的入度。

3.按照拓扑排序一次处理每个连通块,先将所有入读为0的连通块的编号加入队列中。

4.每次从队头取出一个连通块的编号bid

5.将改block[bid]中的所有点加入堆中,然后对堆中所有点跑Dijkstra算法。

6.每次取出堆中距离最小的点ver

7.遍历ver的所有邻点 j,如果 id[ver]=id[j],那么如果j能被更新,则将j插入堆中;如果id[ver]!=id[j],则将id[j]这个连通块的入度减1,如果减成0了,则将其插入拓扑排序的队列中

#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<math.h>
#include<map>
#include<sstream>
#include<deque>
#include<unordered_map>
using namespace std;
typedef pair<double, int > PDI;
typedef pair<int, int> PII;
const int N = 25000 + 5, M = 150000+5,INF=0x3f3f3f3f;
int n, mr, mp, S;
int h[N], e[M], w[M], ne[M], idx;
int din[N], id[N], d[N];
vector<int>block[N];
int vis[N];
queue<int>q;void add(int a, int b, int c) {e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}void dfs(int ver, int cnt) {id[ver] = cnt;block[cnt].push_back(ver);for (int i = h[ver]; i != -1; i = ne[i]) {int j = e[i];if (!id[j])dfs(j, cnt);}
}void Dijkstra(int u) {priority_queue<PII, vector<PII>, greater<PII>>heap;for (auto i : block[u])heap.push({ d[i],i });while (!heap.empty()) {auto t = heap.top();heap.pop();int y = t.second;if (vis[y])continue;vis[y] = 1;for (int i = h[y]; i != -1; i = ne[i]) {int j = e[i];if (d[j] > d[y] + w[i]) {d[j] = d[y] + w[i];if (id[y] == id[j])heap.push({ d[j],j });}if (id[y] != id[j]) {din[id[j]]--;if (din[id[j]] == 0)q.push(id[j]);}}}
}void topsort(int cnt) {for (int i = 1; i < cnt; i++) {if (!din[i])q.push(i);}while (!q.empty()) {int t = q.front();q.pop();Dijkstra(t);}
}int main() {scanf("%d%d%d%d", &n, &mr, &mp, &S);memset(h, -1, sizeof h);for (int i = 1,a,b,c; i <= mr; i++) {scanf("%d%d%d", &a, &b, &c);add(a, b, c);add(b, a, c);}int cnt = 1;for (int i = 1; i <= n; i++) {if (!id[i]) {dfs(i, cnt);cnt++;}}for (int i = 1,a,b,c; i <= mp; i++) {scanf("%d%d%d", &a, &b, &c);add(a, b, c);din[id[b]]++;}memset(d, 0x3f, sizeof d);d[S] = 0;topsort(cnt);for (int i = 1; i <= n; i++) {if (d[i] > INF / 2) {printf("NO PATH\n");}else {printf("%d\n", d[i]);}}return 0;
}

 

这篇关于342. 道路与航线(拓扑排序,Dijkstra综合应用)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/595269

相关文章

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

Java Stream 的 Collectors.toMap高级应用与最佳实践

《JavaStream的Collectors.toMap高级应用与最佳实践》文章讲解JavaStreamAPI中Collectors.toMap的使用,涵盖基础语法、键冲突处理、自定义Map... 目录一、基础用法回顾二、处理键冲突三、自定义 Map 实现类型四、处理 null 值五、复杂值类型转换六、处理

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布