342. 道路与航线(拓扑排序,Dijkstra综合应用)

2024-01-11 18:12

本文主要是介绍342. 道路与航线(拓扑排序,Dijkstra综合应用),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

342. 道路与航线 - AcWing题库

农夫约翰正在一个新的销售区域对他的牛奶销售方案进行调查。

他想把牛奶送到 T 个城镇,编号为 1∼T。

这些城镇之间通过 R 条道路 (编号为 1 到 R) 和 P 条航线 (编号为 1 到 P) 连接。

每条道路 i 或者航线 i 连接城镇 Ai 到 Bi,花费为 Ci。

对于道路,0≤Ci≤10,000;然而航线的花费很神奇,花费 Ci 可能是负数(−10,000≤Ci≤10,000)。

道路是双向的,可以从 Ai 到 Bi,也可以从 Bi 到 Ai,花费都是 Ci。

然而航线与之不同,只可以从 Ai 到 Bi。

事实上,由于最近恐怖主义太嚣张,为了社会和谐,出台了一些政策:保证如果有一条航线可以从 Ai 到 Bi,那么保证不可能通过一些道路和航线从 Bi 回到 Ai。

由于约翰的奶牛世界公认十分给力,他需要运送奶牛到每一个城镇。

他想找到从发送中心城镇 S 把奶牛送到每个城镇的最便宜的方案。

输入格式

第一行包含四个整数 T,R,P,S。

接下来 R 行,每行包含三个整数(表示一个道路)Ai,Bi,Ci。

接下来 P 行,每行包含三个整数(表示一条航线)Ai,Bi,Ci。

输出格式

第 1..T 行:第 i 行输出从 S 到达城镇 i 的最小花费,如果不存在,则输出 NO PATH

数据范围

1≤T≤25000
1≤R,P≤50000
1≤Ai,Bi,S≤T

输入样例:
6 3 3 4
1 2 5
3 4 5
5 6 10
3 5 -100
4 6 -100
1 3 -10
输出样例:
NO PATH
NO PATH
5
0
-95
-100

 解析:

由于题目说:保证如果有一条航线可以从 Ai 到 Bi,那么保证不可能通过一些道路和航线从 Bi 回到 Ai。

所以图中有路线和点组成的强连通分量,可以将每个强连通分量看作是一个点,每个点之间有航线(单向边)连接,且这个由强连通分量构成的图为拓扑图。

对于单源最短路问题:

1.如果一个图的边权非负,那么就可以使用 Dijkstra 算法,时间复杂度为 mlogn.

2.如果是拓扑图,不管边权是正是负,均可按照拓扑序扫描,时间复杂度是线性的

因此,可以想到,每个强连通分量内部我们可以使用 Dijkstra 算法,强连通分量之间我们可以使用拓扑排序。

算法实现:

1.先输入所有双向道路,然后dfs出所有连通块,计算两个数组:id[] 存储每个点属于哪个连通块;vector<int>block[]存储每个连通块里有哪些点;

2.输入所有航线,同时统计出每个连通块的入度。

3.按照拓扑排序一次处理每个连通块,先将所有入读为0的连通块的编号加入队列中。

4.每次从队头取出一个连通块的编号bid

5.将改block[bid]中的所有点加入堆中,然后对堆中所有点跑Dijkstra算法。

6.每次取出堆中距离最小的点ver

7.遍历ver的所有邻点 j,如果 id[ver]=id[j],那么如果j能被更新,则将j插入堆中;如果id[ver]!=id[j],则将id[j]这个连通块的入度减1,如果减成0了,则将其插入拓扑排序的队列中

#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<math.h>
#include<map>
#include<sstream>
#include<deque>
#include<unordered_map>
using namespace std;
typedef pair<double, int > PDI;
typedef pair<int, int> PII;
const int N = 25000 + 5, M = 150000+5,INF=0x3f3f3f3f;
int n, mr, mp, S;
int h[N], e[M], w[M], ne[M], idx;
int din[N], id[N], d[N];
vector<int>block[N];
int vis[N];
queue<int>q;void add(int a, int b, int c) {e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}void dfs(int ver, int cnt) {id[ver] = cnt;block[cnt].push_back(ver);for (int i = h[ver]; i != -1; i = ne[i]) {int j = e[i];if (!id[j])dfs(j, cnt);}
}void Dijkstra(int u) {priority_queue<PII, vector<PII>, greater<PII>>heap;for (auto i : block[u])heap.push({ d[i],i });while (!heap.empty()) {auto t = heap.top();heap.pop();int y = t.second;if (vis[y])continue;vis[y] = 1;for (int i = h[y]; i != -1; i = ne[i]) {int j = e[i];if (d[j] > d[y] + w[i]) {d[j] = d[y] + w[i];if (id[y] == id[j])heap.push({ d[j],j });}if (id[y] != id[j]) {din[id[j]]--;if (din[id[j]] == 0)q.push(id[j]);}}}
}void topsort(int cnt) {for (int i = 1; i < cnt; i++) {if (!din[i])q.push(i);}while (!q.empty()) {int t = q.front();q.pop();Dijkstra(t);}
}int main() {scanf("%d%d%d%d", &n, &mr, &mp, &S);memset(h, -1, sizeof h);for (int i = 1,a,b,c; i <= mr; i++) {scanf("%d%d%d", &a, &b, &c);add(a, b, c);add(b, a, c);}int cnt = 1;for (int i = 1; i <= n; i++) {if (!id[i]) {dfs(i, cnt);cnt++;}}for (int i = 1,a,b,c; i <= mp; i++) {scanf("%d%d%d", &a, &b, &c);add(a, b, c);din[id[b]]++;}memset(d, 0x3f, sizeof d);d[S] = 0;topsort(cnt);for (int i = 1; i <= n; i++) {if (d[i] > INF / 2) {printf("NO PATH\n");}else {printf("%d\n", d[i]);}}return 0;
}

 

这篇关于342. 道路与航线(拓扑排序,Dijkstra综合应用)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/595269

相关文章

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Mybatis 传参与排序模糊查询功能实现

《Mybatis传参与排序模糊查询功能实现》:本文主要介绍Mybatis传参与排序模糊查询功能实现,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、#{ }和${ }传参的区别二、排序三、like查询四、数据库连接池五、mysql 开发企业规范一、#{ }和${ }传参的