342. 道路与航线(拓扑排序,Dijkstra综合应用)

2024-01-11 18:12

本文主要是介绍342. 道路与航线(拓扑排序,Dijkstra综合应用),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

342. 道路与航线 - AcWing题库

农夫约翰正在一个新的销售区域对他的牛奶销售方案进行调查。

他想把牛奶送到 T 个城镇,编号为 1∼T。

这些城镇之间通过 R 条道路 (编号为 1 到 R) 和 P 条航线 (编号为 1 到 P) 连接。

每条道路 i 或者航线 i 连接城镇 Ai 到 Bi,花费为 Ci。

对于道路,0≤Ci≤10,000;然而航线的花费很神奇,花费 Ci 可能是负数(−10,000≤Ci≤10,000)。

道路是双向的,可以从 Ai 到 Bi,也可以从 Bi 到 Ai,花费都是 Ci。

然而航线与之不同,只可以从 Ai 到 Bi。

事实上,由于最近恐怖主义太嚣张,为了社会和谐,出台了一些政策:保证如果有一条航线可以从 Ai 到 Bi,那么保证不可能通过一些道路和航线从 Bi 回到 Ai。

由于约翰的奶牛世界公认十分给力,他需要运送奶牛到每一个城镇。

他想找到从发送中心城镇 S 把奶牛送到每个城镇的最便宜的方案。

输入格式

第一行包含四个整数 T,R,P,S。

接下来 R 行,每行包含三个整数(表示一个道路)Ai,Bi,Ci。

接下来 P 行,每行包含三个整数(表示一条航线)Ai,Bi,Ci。

输出格式

第 1..T 行:第 i 行输出从 S 到达城镇 i 的最小花费,如果不存在,则输出 NO PATH

数据范围

1≤T≤25000
1≤R,P≤50000
1≤Ai,Bi,S≤T

输入样例:
6 3 3 4
1 2 5
3 4 5
5 6 10
3 5 -100
4 6 -100
1 3 -10
输出样例:
NO PATH
NO PATH
5
0
-95
-100

 解析:

由于题目说:保证如果有一条航线可以从 Ai 到 Bi,那么保证不可能通过一些道路和航线从 Bi 回到 Ai。

所以图中有路线和点组成的强连通分量,可以将每个强连通分量看作是一个点,每个点之间有航线(单向边)连接,且这个由强连通分量构成的图为拓扑图。

对于单源最短路问题:

1.如果一个图的边权非负,那么就可以使用 Dijkstra 算法,时间复杂度为 mlogn.

2.如果是拓扑图,不管边权是正是负,均可按照拓扑序扫描,时间复杂度是线性的

因此,可以想到,每个强连通分量内部我们可以使用 Dijkstra 算法,强连通分量之间我们可以使用拓扑排序。

算法实现:

1.先输入所有双向道路,然后dfs出所有连通块,计算两个数组:id[] 存储每个点属于哪个连通块;vector<int>block[]存储每个连通块里有哪些点;

2.输入所有航线,同时统计出每个连通块的入度。

3.按照拓扑排序一次处理每个连通块,先将所有入读为0的连通块的编号加入队列中。

4.每次从队头取出一个连通块的编号bid

5.将改block[bid]中的所有点加入堆中,然后对堆中所有点跑Dijkstra算法。

6.每次取出堆中距离最小的点ver

7.遍历ver的所有邻点 j,如果 id[ver]=id[j],那么如果j能被更新,则将j插入堆中;如果id[ver]!=id[j],则将id[j]这个连通块的入度减1,如果减成0了,则将其插入拓扑排序的队列中

#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<math.h>
#include<map>
#include<sstream>
#include<deque>
#include<unordered_map>
using namespace std;
typedef pair<double, int > PDI;
typedef pair<int, int> PII;
const int N = 25000 + 5, M = 150000+5,INF=0x3f3f3f3f;
int n, mr, mp, S;
int h[N], e[M], w[M], ne[M], idx;
int din[N], id[N], d[N];
vector<int>block[N];
int vis[N];
queue<int>q;void add(int a, int b, int c) {e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}void dfs(int ver, int cnt) {id[ver] = cnt;block[cnt].push_back(ver);for (int i = h[ver]; i != -1; i = ne[i]) {int j = e[i];if (!id[j])dfs(j, cnt);}
}void Dijkstra(int u) {priority_queue<PII, vector<PII>, greater<PII>>heap;for (auto i : block[u])heap.push({ d[i],i });while (!heap.empty()) {auto t = heap.top();heap.pop();int y = t.second;if (vis[y])continue;vis[y] = 1;for (int i = h[y]; i != -1; i = ne[i]) {int j = e[i];if (d[j] > d[y] + w[i]) {d[j] = d[y] + w[i];if (id[y] == id[j])heap.push({ d[j],j });}if (id[y] != id[j]) {din[id[j]]--;if (din[id[j]] == 0)q.push(id[j]);}}}
}void topsort(int cnt) {for (int i = 1; i < cnt; i++) {if (!din[i])q.push(i);}while (!q.empty()) {int t = q.front();q.pop();Dijkstra(t);}
}int main() {scanf("%d%d%d%d", &n, &mr, &mp, &S);memset(h, -1, sizeof h);for (int i = 1,a,b,c; i <= mr; i++) {scanf("%d%d%d", &a, &b, &c);add(a, b, c);add(b, a, c);}int cnt = 1;for (int i = 1; i <= n; i++) {if (!id[i]) {dfs(i, cnt);cnt++;}}for (int i = 1,a,b,c; i <= mp; i++) {scanf("%d%d%d", &a, &b, &c);add(a, b, c);din[id[b]]++;}memset(d, 0x3f, sizeof d);d[S] = 0;topsort(cnt);for (int i = 1; i <= n; i++) {if (d[i] > INF / 2) {printf("NO PATH\n");}else {printf("%d\n", d[i]);}}return 0;
}

 

这篇关于342. 道路与航线(拓扑排序,Dijkstra综合应用)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/595269

相关文章

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

Python Flask 库及应用场景

《PythonFlask库及应用场景》Flask是Python生态中​轻量级且高度灵活的Web开发框架,基于WerkzeugWSGI工具库和Jinja2模板引擎构建,下面给大家介绍PythonFl... 目录一、Flask 库简介二、核心组件与架构三、常用函数与核心操作 ​1. 基础应用搭建​2. 路由与参

Spring Boot中的YML配置列表及应用小结

《SpringBoot中的YML配置列表及应用小结》在SpringBoot中使用YAML进行列表的配置不仅简洁明了,还能提高代码的可读性和可维护性,:本文主要介绍SpringBoot中的YML配... 目录YAML列表的基础语法在Spring Boot中的应用从YAML读取列表列表中的复杂对象其他注意事项总

电脑系统Hosts文件原理和应用分享

《电脑系统Hosts文件原理和应用分享》Hosts是一个没有扩展名的系统文件,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Hosts文件中寻找对应的IP地址,一旦找到,系统会立即打开对应... Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应

CSS 样式表的四种应用方式及css注释的应用小结

《CSS样式表的四种应用方式及css注释的应用小结》:本文主要介绍了CSS样式表的四种应用方式及css注释的应用小结,本文通过实例代码给大家介绍的非常详细,详细内容请阅读本文,希望能对你有所帮助... 一、外部 css(推荐方式)定义:将 CSS 代码保存为独立的 .css 文件,通过 <link> 标签

Java List排序实例代码详解

《JavaList排序实例代码详解》:本文主要介绍JavaList排序的相关资料,Java排序方法包括自然排序、自定义排序、Lambda简化及多条件排序,实现灵活且代码简洁,文中通过代码介绍的... 目录一、自然排序二、自定义排序规则三、使用 Lambda 表达式简化 Comparator四、多条件排序五、

JAVA数组中五种常见排序方法整理汇总

《JAVA数组中五种常见排序方法整理汇总》本文给大家分享五种常用的Java数组排序方法整理,每种方法结合示例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录前言:法一:Arrays.sort()法二:冒泡排序法三:选择排序法四:反转排序法五:直接插入排序前言:几种常用的Java数组排序