Bayes理论相关应用之——Bayes定理

2024-01-10 20:08

本文主要是介绍Bayes理论相关应用之——Bayes定理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题导入:一个故事引出的一个小问题。


场景描述:面前有两只木桶,编号为C1,C2(之所以用C,是因为木桶的英文为Cask).两只木桶中有数目不等的黑色球和白色球,数目分别是:C1中有70个黑球,30个白球;C2中有50个黑球,50个白球。黑球用B(即Black)表示,白球用W(即White)表示。

问题描述:随机地从两只木桶中取出一个球,发现该球是白色球,问:该白色球来自C1的概率有多大?


要解决该文题,先熟悉几个概念,这几个概念会在解决上述问题时用到。

1.先验概率(Priori Probability),即不需要进行实验就可得到的概率,如上述问题中,从“随机地从两只木桶中取出一个球”这句话可知,C1和C2被选中的概率均为0.5,即P(C1)=P(C2)=0.5;从C1中随机拿出一个球,该球为黑色球的概率为0.7,即P(B)=70/(70+30)=0.7.(注明:此时,已经规定必须从C1中取球,故此时P(C1)=1,其实,此时准确的数学描述应该将P(B)写成P(B|C1)形式)

2.全概率,如上述问题中,如果问“随机地选择一个木桶,且取出的球是黑球的概率是多少?”,该问题的解便是:P(B)=P(B|C1)+P(B|C2),该解的描述是:取出的黑球包括两种情况,或者从C1中取出,即P(B|C1),或者从C2中取出,即P(B|C2),这两种情况统统属于问题描述,故将P(B|C1)与P(B|C2)相加。

3.后验概率,后验概率是指在得到"结果"的信息后重新修正的概率,如我们对求解问题“该白色球来自C1的概率有多大?”做数学形式的描述为:求解P(C1|W),该求解思路是在基于已获得先验概率的基础上进行的,如何求解P(C1|W)是要说明的重点内容。


分析:我们已知先验概率,如P(C1)、P(C2),P(B|C1)、P(B|C2),我们要求P(C1|W),如何通过先验概率求解后验概率呢?


引入一个重要定理:Bayes定理。

贝叶斯定理的形式:P(AB)=P(A|B)*P(B)=P(B|A)*P(A)

Bayes定理的图形证明:



P(AB)=P(A|B)*P(B)变形为P(A|B)=P(AB)/P(B),在文氏图中的意义就是B发生的前提下,A发生的概率P(A|B)就等于B中AB占比。

P(AB)=P(B|A)*P(A)变形为P(A|B)=P(A∩B)/P(A),在文氏图中的意义就是A发生的前提下,B发生的概率P(B|A)就等于A中A∩B占比。

通过P(AB)建立P(A|B)*P(B)与P(B|A)*P(A) 的联立关系,即P(AB)=P(A|B)*P(B)=P(B|A)*P(A)

P(A|B)*P(B)=P(B|A)*P(A)可知,可以通过先验概率计算得到后验概率,如P(A|B)=(P(B|A)*P(A))/P(B),该思想即为Bayes定理的核心思想。


回到问题:如何求解P(C1|W)。

建立P(C1|W)与其他概率(先验或者后验概率)的等式关系。

P(C1|W)*P(W)=P(W|C1)*P(C1)

P(C1|W)=(P(W|C1)*P(C1))/P(W)

通过分析可知P(W|C1)=30/(30+70)=0.3,P(C1)=0.5,P(W)=P(W|C1)+P(W|C2)=0.3+0.5=0.8.

P(C1|W)=(P(W|C1)*P(C1))/P(W)=0.3*0.5/0.8=0.1875.




这篇关于Bayes理论相关应用之——Bayes定理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/591924

相关文章

CSS3中的字体及相关属性详解

《CSS3中的字体及相关属性详解》:本文主要介绍了CSS3中的字体及相关属性,详细内容请阅读本文,希望能对你有所帮助... 字体网页字体的三个来源:用户机器上安装的字体,放心使用。保存在第三方网站上的字体,例如Typekit和Google,可以link标签链接到你的页面上。保存在你自己Web服务器上的字

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

Python Flask 库及应用场景

《PythonFlask库及应用场景》Flask是Python生态中​轻量级且高度灵活的Web开发框架,基于WerkzeugWSGI工具库和Jinja2模板引擎构建,下面给大家介绍PythonFl... 目录一、Flask 库简介二、核心组件与架构三、常用函数与核心操作 ​1. 基础应用搭建​2. 路由与参

Spring Boot中的YML配置列表及应用小结

《SpringBoot中的YML配置列表及应用小结》在SpringBoot中使用YAML进行列表的配置不仅简洁明了,还能提高代码的可读性和可维护性,:本文主要介绍SpringBoot中的YML配... 目录YAML列表的基础语法在Spring Boot中的应用从YAML读取列表列表中的复杂对象其他注意事项总

电脑系统Hosts文件原理和应用分享

《电脑系统Hosts文件原理和应用分享》Hosts是一个没有扩展名的系统文件,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Hosts文件中寻找对应的IP地址,一旦找到,系统会立即打开对应... Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应

CSS 样式表的四种应用方式及css注释的应用小结

《CSS样式表的四种应用方式及css注释的应用小结》:本文主要介绍了CSS样式表的四种应用方式及css注释的应用小结,本文通过实例代码给大家介绍的非常详细,详细内容请阅读本文,希望能对你有所帮助... 一、外部 css(推荐方式)定义:将 CSS 代码保存为独立的 .css 文件,通过 <link> 标签

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件

C#通过进程调用外部应用的实现示例

《C#通过进程调用外部应用的实现示例》本文主要介绍了C#通过进程调用外部应用的实现示例,以WINFORM应用程序为例,在C#应用程序中调用PYTHON程序,具有一定的参考价值,感兴趣的可以了解一下... 目录窗口程序类进程信息类 系统设置类 以WINFORM应用程序为例,在C#应用程序中调用python程序

Java应用如何防止恶意文件上传

《Java应用如何防止恶意文件上传》恶意文件上传可能导致服务器被入侵,数据泄露甚至服务瘫痪,因此我们必须采取全面且有效的防范措施来保护Java应用的安全,下面我们就来看看具体的实现方法吧... 目录恶意文件上传的潜在风险常见的恶意文件上传手段防范恶意文件上传的关键策略严格验证文件类型检查文件内容控制文件存储