Bayes理论相关应用之——Bayes定理

2024-01-10 20:08

本文主要是介绍Bayes理论相关应用之——Bayes定理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题导入:一个故事引出的一个小问题。


场景描述:面前有两只木桶,编号为C1,C2(之所以用C,是因为木桶的英文为Cask).两只木桶中有数目不等的黑色球和白色球,数目分别是:C1中有70个黑球,30个白球;C2中有50个黑球,50个白球。黑球用B(即Black)表示,白球用W(即White)表示。

问题描述:随机地从两只木桶中取出一个球,发现该球是白色球,问:该白色球来自C1的概率有多大?


要解决该文题,先熟悉几个概念,这几个概念会在解决上述问题时用到。

1.先验概率(Priori Probability),即不需要进行实验就可得到的概率,如上述问题中,从“随机地从两只木桶中取出一个球”这句话可知,C1和C2被选中的概率均为0.5,即P(C1)=P(C2)=0.5;从C1中随机拿出一个球,该球为黑色球的概率为0.7,即P(B)=70/(70+30)=0.7.(注明:此时,已经规定必须从C1中取球,故此时P(C1)=1,其实,此时准确的数学描述应该将P(B)写成P(B|C1)形式)

2.全概率,如上述问题中,如果问“随机地选择一个木桶,且取出的球是黑球的概率是多少?”,该问题的解便是:P(B)=P(B|C1)+P(B|C2),该解的描述是:取出的黑球包括两种情况,或者从C1中取出,即P(B|C1),或者从C2中取出,即P(B|C2),这两种情况统统属于问题描述,故将P(B|C1)与P(B|C2)相加。

3.后验概率,后验概率是指在得到"结果"的信息后重新修正的概率,如我们对求解问题“该白色球来自C1的概率有多大?”做数学形式的描述为:求解P(C1|W),该求解思路是在基于已获得先验概率的基础上进行的,如何求解P(C1|W)是要说明的重点内容。


分析:我们已知先验概率,如P(C1)、P(C2),P(B|C1)、P(B|C2),我们要求P(C1|W),如何通过先验概率求解后验概率呢?


引入一个重要定理:Bayes定理。

贝叶斯定理的形式:P(AB)=P(A|B)*P(B)=P(B|A)*P(A)

Bayes定理的图形证明:



P(AB)=P(A|B)*P(B)变形为P(A|B)=P(AB)/P(B),在文氏图中的意义就是B发生的前提下,A发生的概率P(A|B)就等于B中AB占比。

P(AB)=P(B|A)*P(A)变形为P(A|B)=P(A∩B)/P(A),在文氏图中的意义就是A发生的前提下,B发生的概率P(B|A)就等于A中A∩B占比。

通过P(AB)建立P(A|B)*P(B)与P(B|A)*P(A) 的联立关系,即P(AB)=P(A|B)*P(B)=P(B|A)*P(A)

P(A|B)*P(B)=P(B|A)*P(A)可知,可以通过先验概率计算得到后验概率,如P(A|B)=(P(B|A)*P(A))/P(B),该思想即为Bayes定理的核心思想。


回到问题:如何求解P(C1|W)。

建立P(C1|W)与其他概率(先验或者后验概率)的等式关系。

P(C1|W)*P(W)=P(W|C1)*P(C1)

P(C1|W)=(P(W|C1)*P(C1))/P(W)

通过分析可知P(W|C1)=30/(30+70)=0.3,P(C1)=0.5,P(W)=P(W|C1)+P(W|C2)=0.3+0.5=0.8.

P(C1|W)=(P(W|C1)*P(C1))/P(W)=0.3*0.5/0.8=0.1875.




这篇关于Bayes理论相关应用之——Bayes定理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/591924

相关文章

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

Java Stream 的 Collectors.toMap高级应用与最佳实践

《JavaStream的Collectors.toMap高级应用与最佳实践》文章讲解JavaStreamAPI中Collectors.toMap的使用,涵盖基础语法、键冲突处理、自定义Map... 目录一、基础用法回顾二、处理键冲突三、自定义 Map 实现类型四、处理 null 值五、复杂值类型转换六、处理

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.