基于图像合成和注意力的深度神经网络从计算机断层扫描灌注图像中自动分割缺血性脑卒中病变

本文主要是介绍基于图像合成和注意力的深度神经网络从计算机断层扫描灌注图像中自动分割缺血性脑卒中病变,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Automatic ischemic stroke lesion segmentation from computed tomography perfusion images by image synthesis and attention-based deep neural networks

  • 基于图像合成和注意力的深度神经网络从计算机断层扫描灌注图像中自动分割缺血性脑卒中病变
    • 背景
    • 贡献
    • 实验
      • Comparison of different loss functions for pseudo DWI synthesis(伪DWI合成中不同损失函数的比较)
      • Effect of feature extractor on pseudo DWI synthesis(特征提取器对伪DWI合成的影响)
      • 对比试验
      • Comparison of different training loss functions for segmentation(分割损失函数对比)
      • 特征提取器和伪DWI生成器对分割的影响(合成分割联合训练的对比)
    • 方法
      • Feature extraction from raw spatiotemporal CTA images
      • Pseudo DWI synthesis from CTP images
      • SLNet: stroke lesion segmentation network with switchable normalization and channel calibration(SLNet:具有可SN和通道校准的脑卒中病变分割网络)
    • Thinking

基于图像合成和注意力的深度神经网络从计算机断层扫描灌注图像中自动分割缺血性脑卒中病变

Medical Image Analysis 65 (2020) 101787

背景

从计算机断层扫描灌注(CTP)图像中分割缺血性脑卒中病变对于急性护理病房中准确诊断脑卒中非常重要。然而,除了病变的复杂外观外,它还受到灌注参数图的低图像对比度和分辨率的挑战。为了解决这个问题,我们提出了一种基于CTP合成伪扩散加权成像(DWI)的新框架,以获得更好的图像质量,实现更准确的分割。我们的框架由基于卷积神经网络(CNNs)的三个组件组成,并进行端到端训练。首先,使用特征提取器来获得原始时空计算机断层扫描血管造影(CTA)图像的低级别和高级别紧凑表示。其次,伪DWI生成器将CTP灌注参数图和我们提取的特征的级联作为输入,以获得合成的伪DWI。为了获得更好的合成质量,我们提出了一种混合损失函数,该函数更加关注病变区域,并鼓励高水平的上下文一致性。最后,我们从合成的伪DWI中分割病变区域,其中分割网络基于可切换的归一化和通道校准,以获得更好的性能。实验结果表明,我们的框架在ISLES 2018挑战中获得了最高的性能,并且:(1)我们使用合成伪DWI的方法优于直接从灌注参数图中分割病变的方法;(2) 利用额外的时空CTA图像的特征提取器导致更好的合成伪DWI质量和更高的分割精度;以及(3)所提出的损失函数和网络结构提高了伪DWI合成和病变分割的性能。所提出的框架有可能改善缺血性中风的诊断和治疗,因为真正的DWI扫描有限。
在这里插入图片描述

贡献

  • 首先,我们提出了一种新的基于合成伪DWI的CTP图像缺血性脑卒中病变自动分割框架。与仅使用CTP灌注参数图相比,我们的框架还利用了原始时空CTA图像,以获得更高的伪DWI合成质量和病变分割精度
  • 其次,为了更有效地利用原始时空CTA图像,我们提出了一种特征提取器,可以自动获得更紧凑、更高级的CTA图像表示,这有助于减少所需的内存和计算时间,并提高我们的分割方法的性能。
  • 第三,我们提出了一种新的方法来合成缺血性脑卒中病变的伪DWI图像。我们使用高级相似性损失函数来鼓励伪DWI在局部细节和全局上下文方面接近基本事实,并提出了一种注意力引导的合成策略,以便生成器将更多地关注病变部分,这有利于最终分割。
  • 最后,为了从我们合成的伪DWI中分割病变,我们提出了一种适用于小训练批量的具有通道校准可切换归一化(SN)的卷积神经网络(CNN)(Luo et al.,2018),并将其与一种新的基于注意力硬度感知的损失函数相结合,该函数有助于获得缺血性中风病变的更准确分割。实验结果表明,我们的方法在ISLES 2018挑战中获得了最先进的性能,并且它优于CTP灌注参数图的直接分割和CTP图像中基于现代图像合成的缺血性脑卒中病变分割方法(Liu,2018)。

实验

Comparison of different loss functions for pseudo DWI synthesis(伪DWI合成中不同损失函数的比较)

合成损失函数的对比,w-L2 + Lh1更有利于分割,w-L2更有利于合成
在这里插入图片描述

Effect of feature extractor on pseudo DWI synthesis(特征提取器对伪DWI合成的影响)

拼接各个图用于合成、分割的消融,Real DWI 最高,使用Fl,Fh,Fo合成分割由于只用Fo
在这里插入图片描述

对比试验

SN代替BN涨了1.4个点,SE注意力机制涨了1个点,相比于ResUnet提升了2个点
在这里插入图片描述

Comparison of different training loss functions for segmentation(分割损失函数对比)

Lwce比Lce涨了1.5个点,可见得到的加权注意力图是有效的
在这里插入图片描述

特征提取器和伪DWI生成器对分割的影响(合成分割联合训练的对比)

单模态分割56.10,本文方法62.23,Real Flair 79.72,相比于单模态涨了7个点,相比于Real Flair查了17个点
在这里插入图片描述

方法

首先,为了有效地处理大的原始时空CTA图像并降低计算要求,我们设计了一个高级特征提取器,该提取器使用CNN来获得原始时空CTA图像的密集特征。
此外,我们利用CTA图像的时间最大强度投影(MIP)作为低级特征。然后,将这些特征与灌注参数图连接起来,作为伪DWI生成器的输入,该生成器获得病变和背景之间具有更好对比度的伪DWI图像。为了提高病变区域附近的合成质量,我们使用了基于高水平相似性的损失函数,使生成器能够更加关注病变
最后,分割器将伪DWI图像作为输入,并产生缺血性中风病变的分割,其中提出了使用基于注意力和强感知损失函数训练的通道校准和可切换归一化的CNN来提高性能。这三个组成部分是端到端训练的。
在这里插入图片描述

Feature extraction from raw spatiotemporal CTA images

使用UNet提取Spatiotemporal CTA的特征

Pseudo DWI synthesis from CTP images

Ig是生成的输出,Id是标签,L2损失(low-level weighted pixel-wise loss) + L1损失(high-level contextual loss),L2范数用于像素级损失,使得最小化L2范数对应于最大化PSNR。另一方面,由于L1范数平等地对待每个元素,而L2范数为可能由异常值引起的较大预测误差分配更高的权重(即,通过平方),因此L1范数比L2范数具有更高的鲁棒性(Ghosh等人,2017)。因此,我们使用L1范数来表示高级上下文损失
在这里插入图片描述
将低级特征转化为高级特征的编码器结构,Lh是通过这个编码器转化为高级特征之后再算L1损失
在这里插入图片描述
通过这个公式获取病变权重图,给合成加权,让合成更关注病变区域
最终目标是分割缺血性中风病变,因此病变区域周围需要良好的合成质量。因此,我们使用体素权重图A来使生成器更多地关注病变区域,而较少关注背景。设F表示病变前景体素的集合,Eud(i,F)表示体素i和F之间的最短欧几里得距离。我们使用Ai来表示权重图A中体素i的权重:
在这里插入图片描述
在这里插入图片描述

SLNet: stroke lesion segmentation network with switchable normalization and channel calibration(SLNet:具有可SN和通道校准的脑卒中病变分割网络)

在UNet的编码器模块加入了SE注意力机制,把BN换成SN,batchsize小的时候SN更优
由于特征图中的不同通道可能具有不同的重要性,我们使用基于通道注意力的挤压和激励(SE)块(Hu et al.,2018)来校准通道特征响应。SE块通过学习每个通道的注意力权重来显式地对通道间依赖性进行建模,使得网络更多地依赖于最重要的通道进行分割
在这里插入图片描述
分割损失函数
在这里插入图片描述

Thinking

注意力系数图可以借鉴,损失函数可以借鉴。SN和SE注意力机制改进的UNet略显老套,不过这不是本文的重点。

这篇关于基于图像合成和注意力的深度神经网络从计算机断层扫描灌注图像中自动分割缺血性脑卒中病变的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/590473

相关文章

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

SpringBoot实现RSA+AES自动接口解密的实战指南

《SpringBoot实现RSA+AES自动接口解密的实战指南》在当今数据泄露频发的网络环境中,接口安全已成为开发者不可忽视的核心议题,RSA+AES混合加密方案因其安全性高、性能优越而被广泛采用,本... 目录一、项目依赖与环境准备1.1 Maven依赖配置1.2 密钥生成与配置二、加密工具类实现2.1