控制障碍函数(Control Barrier Function,CBF) 三、代码

2024-01-10 08:52

本文主要是介绍控制障碍函数(Control Barrier Function,CBF) 三、代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

三、代码实现

3.1、模型

这是一个QP问题,所以我们直接建模

请添加图片描述

这其实还是之前的那张图,我们把这个大的框架带入到之前的那个小车追击的问题中去,得到以下的一些具体的约束条件

  • CLF约束

L g V ( x ) u − δ ≤ − L f V ( x ) − λ V ( x ) L_g V(x) u - \delta \le - L_fV(x) - \lambda V(x) LgV(x)uδLfV(x)λV(x)

  • CBF约束

− L g B ( x ) u ≤ L f B ( x ) + γ B ( x ) -L_g B(x) u \le L_fB(x) + \gamma B(x) LgB(x)uLfB(x)+γB(x)

  • 输入约束

u ≤ u m a x − u ≤ − u m i n \begin{aligned} u &\le u_{max} \\ -u &\le - u_{min} \end{aligned} uuumaxumin

我们全部写成了这种小于等于的形式,便于下面的二次规划

3.2、实现
clc; clear; close all;dt = 0.02;                                                                 
T = 30;
length = ceil(T ./ dt);sys.p = zeros(length,1);                                                   % 位置
sys.v = zeros(length,1);                                                   % 速度
sys.z = zeros(length,1);                                                   % 与前车距离
sys.u = zeros(length,1);                                                   % 控制量
sys.m = 1650;                                                              % 与系统相关参数
sys.g = 9.81;
sys.v0 = 14;
sys.vd = 24;
sys.f0 = 0.1;
sys.f1 = 5;
sys.f2 = 0.25;
sys.ca = 0.3;
sys.cd = 0.3;
sys.T = 1.8;
sys.u_max = sys.ca .* sys.m .* sys.g;                                      % 控制量最大值
sys.u_min = - sys.cd .* sys.m .* sys.g;                                    % 控制量最小值
sys.clf.rate = 5;                                                          % lambda
sys.cbf.rate = 5;                                                          % gamma
sys.wight.input = 2 ./ sys.m .^ 2;                                         % 二次型矩阵H
sys.wight.slack = 2e-2;                                                    % 松弛变量系数 p% 状态初始化
sys.p(1,1) = 0;
sys.v(1,1) = 10;
sys.z(1,1) = 100;for i = 1:(length)t = i .* dt;p = sys.p(i,1);v = sys.v(i,1);z = sys.z(i,1);x = [p; v; z];F_r = sys.f0 + sys.f1.*v + sys.f2 .* v .* v;f = [v; - F_r ./ sys.m; sys.v0 - v];g = [0; 1./sys.m; 0];V = (v - sys.vd) .^ 2;                                                 % 李雅普诺夫函数dV = [0, 2 .* (v - sys.vd), 0];                                        % 李雅普诺夫函数的导LfV = dV * f;                                                          % 李导数LgV = dV * g;B = z - sys.T .* v - 0.5 .* (v - sys.v0) .^ 2 ./ (sys.cd .* sys.g);    % 障碍函数dB = [0, - sys.T - (v - sys.v0) ./ sys.cd ./ sys.g, 0];                % 障碍函数的导LfB = dB * f;                                                          % 李导数LgB = dB * g;% 解控制量uA_ = [LgV, -1; -LgB, 0;1,0;-1,0];b_ = [-LfV - sys.clf.rate .* V; LfB + sys.cbf.rate .* B;sys.u_max;-sys.u_min;];H_ = [sys.wight.input, 0;0,sys.wight.slack];f_ = [- sys.wight.input * F_r; 0];u = quadprog(H_,f_,A_,b_);u = u(1); % 第二项是松弛变量,松弛变量这里也是一个待优化的值dx = f + g .* u;x_n = x + dx .* dt;% 保存数据sys.u(i,1) = u;sys.p(i+1,1) = x_n(1);sys.v(i+1,1) = x_n(2);sys.z(i+1,1) = x_n(3);
end% 绘图
figure(1);
subplot(4,1,1);
plot(dt:dt:T,sys.p(1:length,:));
ylabel('p')subplot(4,1,2);
plot(dt:dt:T,sys.v(1:length,:));
ylabel('v')subplot(4,1,3);
plot(dt:dt:T,sys.z(1:length,:));
ylabel('z')subplot(4,1,4);
plot(dt:dt:T,sys.u);
ylabel('u')

这里我们的二次规划求解器用到了Matlab中的函数quadprog,其文档地址为 https://ww2.mathworks.cn/help/optim/ug/quadprog.html

本文的结果为

请添加图片描述

相较于作者给出的代码,本文的代码更加简单,适合初学者使用

这篇关于控制障碍函数(Control Barrier Function,CBF) 三、代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/590242

相关文章

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析