C# OpenCvSharp DNN FreeYOLO 人脸检测人脸图像质量评估

本文主要是介绍C# OpenCvSharp DNN FreeYOLO 人脸检测人脸图像质量评估,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

效果

模型信息

yolo_free_huge_widerface_192x320.onnx

face-quality-assessment.onnx

项目

代码

frmMain.cs

FreeYoloFace

FaceQualityAssessment.cs

下载


C# OpenCvSharp DNN FreeYOLO 人脸检测&人脸图像质量评估

效果

模型信息

yolo_free_huge_widerface_192x320.onnx


Inputs
-------------------------
name:input
tensor:Float[1, 3, 192, 320]
---------------------------------------------------------------

Outputs
-------------------------
name:output
tensor:Float[1, 1260, 6]
---------------------------------------------------------------

face-quality-assessment.onnx

Inputs
-------------------------
name:input
tensor:Float[1, 3, 112, 112]
---------------------------------------------------------------

Outputs
-------------------------
name:quality
tensor:Float[1, 10]
---------------------------------------------------------------

项目

代码

frmMain.cs

using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace OpenCvSharp_DNN_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;

        StringBuilder sb = new StringBuilder();

        Mat image;
        Mat result_image;

        FaceQualityAssessment fqa = new FaceQualityAssessment("model/face-quality-assessment.onnx");
        FreeYoloFace face = new FreeYoloFace("model/yolo_free_huge_widerface_192x320.onnx");

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            image_path = "test_img/1.jpg";
            pictureBox1.Image = new Bitmap(image_path);
        }

        private unsafe void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等……";
            if (pictureBox2.Image != null)
            {
                pictureBox2.Image.Dispose();
            }
            pictureBox2.Image = null;
            sb.Clear();
            Application.DoEvents();

            image = new Mat(image_path);

            dt1 = DateTime.Now;
            List<Face> ltFace = face.Detect(image);
            dt2 = DateTime.Now;

            if (ltFace.Count > 0)
            {
                sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
                result_image = image.Clone();
                foreach (var item in ltFace)
                {
                    Mat crop_img = new Mat(image, item.rect);
                    float fqa_prob_mean = fqa.Detect(crop_img);
                    crop_img.Dispose();
                    Cv2.Rectangle(result_image, new OpenCvSharp.Point(item.rect.X, item.rect.Y), new OpenCvSharp.Point(item.rect.X + item.rect.Width, item.rect.Y + item.rect.Height), new Scalar(0, 0, 255), 2);
                    string label = "prob:" + item.prob.ToString("0.00") + " fqa_score:" + fqa_prob_mean.ToString("0.00");
                    sb.AppendLine(label);
                    Cv2.PutText(result_image, label, new OpenCvSharp.Point(item.rect.X, item.rect.Y - 5), HersheyFonts.HersheySimplex, 1, new Scalar(0, 0, 255), 2);
                }
                pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
                textBox1.Text = sb.ToString();
            }
            else
            {
                textBox1.Text = "未检测到人脸";
            }
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
    }
}

FreeYoloFace.cs

using OpenCvSharp.Dnn;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Linq;namespace OpenCvSharp_DNN_Demo
{public class FreeYoloFace{float confThreshold;float nmsThreshold;int num_stride = 3;float[] strides = new float[3] { 8.0f, 16.0f, 32.0f };string modelpath;int inpHeight;int inpWidth;List<string> class_names;int num_class;Net opencv_net;Mat BN_image;Mat image;public FreeYoloFace(string modelpath){opencv_net = CvDnn.ReadNetFromOnnx(modelpath);class_names = new List<string> { "face" };num_class = 1;confThreshold = 0.8f;nmsThreshold = 0.5f;inpHeight = 192;inpWidth = 320;}unsafe public List<Face> Detect(Mat image){List<Face> ltFace = new List<Face>();float ratio = Math.Min(1.0f * inpHeight / image.Rows, 1.0f * inpWidth / image.Cols);int neww = (int)(image.Cols * ratio);int newh = (int)(image.Rows * ratio);Mat dstimg = new Mat();Cv2.Resize(image, dstimg, new OpenCvSharp.Size(neww, newh));Cv2.CopyMakeBorder(dstimg, dstimg, 0, inpHeight - newh, 0, inpWidth - neww, BorderTypes.Constant);BN_image = CvDnn.BlobFromImage(dstimg);//配置图片输入数据opencv_net.SetInput(BN_image);//模型推理,读取推理结果Mat[] outs = new Mat[1] { new Mat() };string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();opencv_net.Forward(outs, outBlobNames);int num_proposal = outs[0].Size(1);int nout = outs[0].Size(2);float* pdata = (float*)outs[0].Data;List<float> confidences = new List<float>();List<Rect> boxes = new List<Rect>();List<int> classIds = new List<int>();for (int n = 0; n < num_stride; n++){int num_grid_x = (int)Math.Ceiling(inpWidth / strides[n]);int num_grid_y = (int)Math.Ceiling(inpHeight / strides[n]);for (int i = 0; i < num_grid_y; i++){for (int j = 0; j < num_grid_x; j++){float box_score = pdata[4];int max_ind = 0;float max_class_socre = 0;for (int k = 0; k < num_class; k++){if (pdata[k + 5] > max_class_socre){max_class_socre = pdata[k + 5];max_ind = k;}}max_class_socre = max_class_socre * box_score;max_class_socre = (float)Math.Sqrt(max_class_socre);if (max_class_socre > confThreshold){float cx = (0.5f + j + pdata[0]) * strides[n];  //cxfloat cy = (0.5f + i + pdata[1]) * strides[n];   //cyfloat w = (float)(Math.Exp(pdata[2]) * strides[n]);   //wfloat h = (float)(Math.Exp(pdata[3]) * strides[n]);  //hfloat xmin = (float)((cx - 0.5 * w) / ratio);float ymin = (float)((cy - 0.5 * h) / ratio);float xmax = (float)((cx + 0.5 * w) / ratio);float ymax = (float)((cy + 0.5 * h) / ratio);int left = (int)((cx - 0.5 * w) / ratio);int top = (int)((cy - 0.5 * h) / ratio);int width = (int)(w / ratio);int height = (int)(h / ratio);confidences.Add(max_class_socre);boxes.Add(new Rect(left, top, width, height));classIds.Add(max_ind);}pdata += nout;}}}int[] indices;CvDnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, out indices);for (int ii = 0; ii < indices.Length; ++ii){int idx = indices[ii];Rect box = boxes[idx];ltFace.Add(new Face(box, confidences[idx]));}outs[0].Dispose();BN_image.Dispose();dstimg.Dispose();return ltFace;}}
}

FaceQualityAssessment.cs

using OpenCvSharp;
using OpenCvSharp.Dnn;
using System.Linq;namespace OpenCvSharp_DNN_Demo
{public class FaceQualityAssessment{Net net;int inpWidth = 112;int inpHeight = 112;float[] mean = new float[] { 0.5f, 0.5f, 0.5f };float[] std = new float[] { 0.5f, 0.5f, 0.5f };public FaceQualityAssessment(string modelpath){net = CvDnn.ReadNetFromOnnx(modelpath);}unsafe public float Detect(Mat cropped){Mat rgbimg = new Mat();Cv2.CvtColor(cropped, rgbimg, ColorConversionCodes.BGR2RGB);Cv2.Resize(rgbimg, rgbimg, new Size(inpWidth, inpHeight));Mat normalized_mat = Normalize(rgbimg);Mat blob = CvDnn.BlobFromImage(normalized_mat);//配置图片输入数据net.SetInput(blob);//模型推理,读取推理结果Mat[] outs = new Mat[1] { new Mat() };string[] outBlobNames = net.GetUnconnectedOutLayersNames().ToArray();net.Forward(outs, outBlobNames);float* pdata = (float*)outs[0].Data;  //形状1x10int length = outs[0].Size(1);float fqa_prob_mean = 0;for (int i = 0; i < length; i++){fqa_prob_mean += pdata[i];}fqa_prob_mean /= length;rgbimg.Dispose();normalized_mat.Dispose();blob.Dispose();outs[0].Dispose();return fqa_prob_mean;}Mat Normalize(Mat src){Mat[] bgr = src.Split();for (int i = 0; i < bgr.Length; ++i){bgr[i].ConvertTo(bgr[i], MatType.CV_32FC1, 1.0 / (255.0 * std[i]), (0.0 - mean[i]) / std[i]);}Cv2.Merge(bgr, src);foreach (Mat channel in bgr){channel.Dispose();}return src;}}
}

下载

源码下载

这篇关于C# OpenCvSharp DNN FreeYOLO 人脸检测人脸图像质量评估的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/590114

相关文章

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

C#如何去掉文件夹或文件名非法字符

《C#如何去掉文件夹或文件名非法字符》:本文主要介绍C#如何去掉文件夹或文件名非法字符的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#去掉文件夹或文件名非法字符net类库提供了非法字符的数组这里还有个小窍门总结C#去掉文件夹或文件名非法字符实现有输入字

C#之List集合去重复对象的实现方法

《C#之List集合去重复对象的实现方法》:本文主要介绍C#之List集合去重复对象的实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C# List集合去重复对象方法1、测试数据2、测试数据3、知识点补充总结C# List集合去重复对象方法1、测试数据

C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式

《C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式》Markdown凭借简洁的语法、优良的可读性,以及对版本控制系统的高度兼容性,逐渐成为最受欢迎的文档格式... 目录为什么要将文档转换为 Markdown 格式使用工具将 Word 文档转换为 Markdown(.

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O