赋能智慧农业生产,基于YOLOv3开发构建农业生产场景下油茶作物成熟检测识别系统

本文主要是介绍赋能智慧农业生产,基于YOLOv3开发构建农业生产场景下油茶作物成熟检测识别系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AI赋能生产生活场景,是加速人工智能技术落地的有利途径,在前文很多具体的业务场景中我们也从实验的角度来尝试性地分析实践了基于AI模型来助力生产生活制造相关的各个领域,诸如:基于AI+硬件实现农业作物除草就是一个比较熟知的场景,对于作物生产采摘场景我们则比较有所涉及,本文的主要目的就是填补这块的空白,以油茶作物采摘场景下的油茶作物成熟检测为切入点,基于目标检测模型来开发构建自动化的油茶作物成熟检测识别系统,这里是开篇,主要是基于YOLOv3来开发实现的实验性质的项目,在实际落地的时候离不开硬件端和控制端的组合,我们这里则主要是偏向软件模型的实现,首先看下实例效果:

本文是选择的比较经典的也是比较古老的YOLOv3来进行模型的开发,YOLOv3(You Only Look Once v3)是一种目标检测算法模型,它是YOLO系列算法的第三个版本。该算法通过将目标检测任务转化为单个神经网络的回归问题,实现了实时目标检测的能力。

YOLOv3的主要优点如下:

实时性能:YOLOv3采用了一种单阶段的检测方法,将目标检测任务转化为一个端到端的回归问题,因此具有较快的检测速度。相比于传统的两阶段方法(如Faster R-CNN),YOLOv3能够在保持较高准确率的情况下实现实时检测。

多尺度特征融合:YOLOv3引入了多尺度特征融合的机制,通过在不同层级的特征图上进行检测,能够有效地检测不同尺度的目标。这使得YOLOv3在处理尺度变化较大的场景时表现出较好的性能。

全局上下文信息:YOLOv3在网络结构中引入了全局上下文信息,通过使用较大感受野的卷积核,能够更好地理解整张图像的语义信息,提高了模型对目标的识别能力。

简洁的网络结构:YOLOv3的网络结构相对简洁,只有75个卷积层和5个池化层,使得模型较易于训练和部署,并且具有较小的模型体积。

YOLOv3也存在一些缺点:

较低的小目标检测能力:由于YOLOv3采用了较大的感受野和下采样操作,对于小目标的检测能力相对较弱。当场景中存在大量小目标时,YOLOv3可能会出现漏检或误检的情况。

较高的定位误差:由于YOLOv3将目标检测任务转化为回归问题,较粗糙的特征图和较大的感受野可能导致较高的定位误差。这意味着YOLOv3在需要较高精度的目标定位时可能会受到一定的限制。

YOLOv3是YOLO系列里程碑性质的模型,随着不断地演变和发展,目前虽然已经在性能上难以与YOLOv5之类的模型对比但是不可否认其做出的突出贡献。

本文选择的是yolov3-tiny模型,如下:

# parameters
nc: 2  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple# anchors
anchors:- [10,14, 23,27, 37,58]  # P4/16- [81,82, 135,169, 344,319]  # P5/32# YOLOv3-tiny backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [16, 3, 1]],  # 0[-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 1-P1/2[-1, 1, Conv, [32, 3, 1]],[-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 3-P2/4[-1, 1, Conv, [64, 3, 1]],[-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 5-P3/8[-1, 1, Conv, [128, 3, 1]],[-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 7-P4/16[-1, 1, Conv, [256, 3, 1]],[-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 9-P5/32[-1, 1, Conv, [512, 3, 1]],[-1, 1, nn.ZeroPad2d, [0, 1, 0, 1]],  # 11[-1, 1, nn.MaxPool2d, [2, 1, 0]],  # 12]# YOLOv3-tiny head
head:[[-1, 1, Conv, [1024, 3, 1]],[-1, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [512, 3, 1]],  # 15 (P5/32-large)[-2, 1, Conv, [128, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 8], 1, Concat, [1]],  # cat backbone P4[-1, 1, Conv, [256, 3, 1]],  # 19 (P4/16-medium)[[19, 15], 1, Detect, [nc, anchors]],  # Detect(P4, P5)]

训练数据配置文件如下:

# path
train: ./dataset/images/train/
val: ./dataset/images/test/# number of classes
nc: 2# class names
names: ['immature', 'mature']

主要包括:未成熟和已成熟两个类别的目标。

默认100次epoch的迭代计算,终端日志输出如下所示:

等待训练完成后来整体看下结果详情:

【数据分布可视化】

【PR曲线】
精确率-召回率曲线(Precision-Recall Curve)是一种用于评估二分类模型性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)和召回率(Recall)之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率-召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率-召回率曲线。
根据曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
精确率-召回率曲线提供了更全面的模型性能分析,特别适用于处理不平衡数据集和关注正例预测的场景。曲线下面积(Area Under the Curve, AUC)可以作为评估模型性能的指标,AUC值越高表示模型的性能越好。
通过观察精确率-召回率曲线,我们可以根据需求选择合适的阈值来权衡精确率和召回率之间的平衡点。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。

【训练可视化】

【Batch实例】

感兴趣的话也都可以自行动手尝试下!

感觉这里目标比较具备区分度,即使是tiny模型也达到了非常优异的结果。

这篇关于赋能智慧农业生产,基于YOLOv3开发构建农业生产场景下油茶作物成熟检测识别系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/589977

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Java中的StringBuilder之如何高效构建字符串

《Java中的StringBuilder之如何高效构建字符串》本文将深入浅出地介绍StringBuilder的使用方法、性能优势以及相关字符串处理技术,结合代码示例帮助读者更好地理解和应用,希望对大家... 目录关键点什么是 StringBuilder?为什么需要 StringBuilder?如何使用 St

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

SpringBoot条件注解核心作用与使用场景详解

《SpringBoot条件注解核心作用与使用场景详解》SpringBoot的条件注解为开发者提供了强大的动态配置能力,理解其原理和适用场景是构建灵活、可扩展应用的关键,本文将系统梳理所有常用的条件注... 目录引言一、条件注解的核心机制二、SpringBoot内置条件注解详解1、@ConditionalOn

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S