王金良发现的ESMD数据分析方法

2024-01-10 00:32

本文主要是介绍王金良发现的ESMD数据分析方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、“Extreme-PointSymmetric Mode Decomposition Method for Data Analysis”,lJin-LiangWang,     Zong-junLi ;Advances in Adaptive Data Analysis,5(3),2013.10

2、数学分析基础:

数学技术:

     -数值模拟:有成熟数学模型的问题是用~

     -数据处理:没有成熟数学模型的问题,只能依靠~

     à观测实验(物理机制不明确的过程):将杂乱无章的观测数据分解成不同频率的模态,从中找出寻找可能的变换规律

傅里叶变换FFT-振幅与频率都不变;用于线性+平稳;

小波变换-通过模态分解,表达频率时变性;线性+非稳态

希尔伯特变换:非线性+非稳态;需要先验初级函数+预设窗口大小(取定一系列频率窗口对信号进行分解,线性叠加原理

HHT经验模式分解-产生固有模态函数;希尔伯特谱分析HSA

极点对称模态分解法ESMD

3、经验模态分解EMDEmpiricalMode Decomposition

EMD方法在理论上可以应用于任何类型的时间序列(信号)的分解

该方法的关键是它能使复杂信号分解为有限个本征模函数(IntrinsicMode Function,简称IMF),所分解出来的各IMF分量包含了原信号的不同时间尺度的局部特征信号。EMD分解方法是基于以下假设条件:

  1)数据至少有两个极值,一个最大值和一个最小值;

  2)数据的局部时域特性是由极值点间的时间尺度唯一确定;

  3)如果数据没有极值点但有拐点,则可以通过对数据微分一次或多次求得极值,然后再通过积分来获得分解结果。

经验模态分解的基本思想:将一个频率不规则的波化为多个单一频率的波+残波的形式。原波形 = ∑IMFs + 余波。

4、筛选过程(Sifting

这种方法的本质是通过数据的特征时间尺度来获得本征波动模式,然后分解数据。这种分解过程可以形象地称之为“筛选(sifting过程

分解过程是:

    -找出原数据序列X(t)所有的极大值点并用三次样条插值函数拟合形成原数据的上包络线

    -同样,找出所有的极小值点,并将所有的极小值点通过三次样条插值函数拟合形成数据的下包络线

    -上包络线和下包络线的均值记作ml,将原数据序列X(t)减去该平均包络ml,得到一个新的数据序列hl

     X(t)-ml=hl

    由原数据减去包络平均后的新数据,若还存在负的局部极大值和正的局部极小值,说明这还不是一个本征模函数,需要继续进行“筛选”。

5、 极点对称模态分解方法 ESMD

HHT基础上四点创新

     -使用更多个内插值曲线去实现筛选过程(1,2,3…

     -最后的剩余作为最优曲线,拥有一定数目的极值点,而不是带有自多一个极值点的一般趋势

     -使用极值点对称取代包络线对称

     -使用基于数据的直接插值方法去计算瞬时频率和振幅

ESMD优点:

   -确定一个优化全局平均曲线时,使用的自适应方法,比一般的最小二乘法和平均运行方法要好;

   -确定瞬时频率和振幅,用的是直接的方法,比希尔伯特谱方法更好

   -这些将提高自适应的数据分析,可用在大气和海洋科学、信息学、经济学、生态学、医药、地震等领域


这是对时序数据分析的典型例子,我还没有完全想好;这种方式是否是普适的,有几个疑问:

(1)生成模态函数的过程是否是自动的,如果是自动的,要保证向着收敛的方向去逼近,这个有没有保证?

(2)每个模态函数怎么和实际的物理意义对应?这个要非常了解应用领域才可以;

(3)筛选次数过多时,算法复杂度如何?执行时间如何?对大数据分析是否使用?




这篇关于王金良发现的ESMD数据分析方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/588940

相关文章

PyTorch核心方法之state_dict()、parameters()参数打印与应用案例

《PyTorch核心方法之state_dict()、parameters()参数打印与应用案例》PyTorch是一个流行的开源深度学习框架,提供了灵活且高效的方式来训练和部署神经网络,这篇文章主要介绍... 目录前言模型案例A. state_dict()方法验证B. parameters()C. 模型结构冻

Python字符串处理方法超全攻略

《Python字符串处理方法超全攻略》字符串可以看作多个字符的按照先后顺序组合,相当于就是序列结构,意味着可以对它进行遍历、切片,:本文主要介绍Python字符串处理方法的相关资料,文中通过代码介... 目录一、基础知识:字符串的“不可变”特性与创建方式二、常用操作:80%场景的“万能工具箱”三、格式化方法

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

基于SpringBoot实现分布式锁的三种方法

《基于SpringBoot实现分布式锁的三种方法》这篇文章主要为大家详细介绍了基于SpringBoot实现分布式锁的三种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、基于Redis原生命令实现分布式锁1. 基础版Redis分布式锁2. 可重入锁实现二、使用Redisso

自定义注解SpringBoot防重复提交AOP方法详解

《自定义注解SpringBoot防重复提交AOP方法详解》该文章描述了一个防止重复提交的流程,通过HttpServletRequest对象获取请求信息,生成唯一标识,使用Redis分布式锁判断请求是否... 目录防重复提交流程引入依赖properties配置自定义注解切面Redis工具类controller

Java调用DeepSeek API的8个高频坑与解决方法

《Java调用DeepSeekAPI的8个高频坑与解决方法》现在大模型开发特别火,DeepSeek因为中文理解好、反应快、还便宜,不少Java开发者都用它,本文整理了最常踩的8个坑,希望对... 目录引言一、坑 1:Token 过期未处理,鉴权异常引发服务中断问题本质典型错误代码解决方案:实现 Token

Nginx 访问控制的多种方法

《Nginx访问控制的多种方法》本文系统介绍了Nginx实现Web访问控制的多种方法,包括IP黑白名单、路径/方法/参数控制、HTTP基本认证、防盗链机制、客户端证书校验、限速限流、地理位置控制等基... 目录一、IP 白名单与黑名单1. 允许/拒绝指定IP2. 全局黑名单二、基于路径、方法、参数的访问控制

Python中Request的安装以及简单的使用方法图文教程

《Python中Request的安装以及简单的使用方法图文教程》python里的request库经常被用于进行网络爬虫,想要学习网络爬虫的同学必须得安装request这个第三方库,:本文主要介绍P... 目录1.Requests 安装cmd 窗口安装为pycharm安装在pycharm设置中为项目安装req

nginx跨域访问配置的几种方法实现

《nginx跨域访问配置的几种方法实现》本文详细介绍了Nginx跨域配置方法,包括基本配置、只允许指定域名、携带Cookie的跨域、动态设置允许的Origin、支持不同路径的跨域控制、静态资源跨域以及... 目录一、基本跨域配置二、只允许指定域名跨域三、完整示例四、配置后重载 nginx五、注意事项六、支持

MySQL查看表的历史SQL的几种实现方法

《MySQL查看表的历史SQL的几种实现方法》:本文主要介绍多种查看MySQL表历史SQL的方法,包括通用查询日志、慢查询日志、performance_schema、binlog、第三方工具等,并... 目录mysql 查看某张表的历史SQL1.查看MySQL通用查询日志(需提前开启)2.查看慢查询日志3.