ICML2019最佳论文奖新鲜发布,Google、ETH、MaxPlanck、剑桥成最终赢家

本文主要是介绍ICML2019最佳论文奖新鲜发布,Google、ETH、MaxPlanck、剑桥成最终赢家,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


源 / 专知

正在美国加州举办的,第36届国际机器学习大会(ICML)公布了本届会议最佳论文奖结果,分别是来自苏黎世联邦理工大学-MaxPlanck研究所-谷歌大脑的《挑战无监督分离式表示学习常见假设》以及剑桥大学的《稀疏变分高斯过程回归的收敛速度》。


论文便捷下载

关注公众号,后台回复关键词

20190613

即可下载


根据公开数据显示,今年ICML共提交论文数3424篇,录用774,录取率为22.6%。


1、Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations


本篇论文为苏黎世联邦理工学院、MaxPlanck智能系统研究所、谷歌大脑联合出品。


在本篇文章中,我们对无监督分离式表示学习进行了大规模的评估工作,并针对一些常见的假设进行了细致分析,以便对未来的工作方向提供一些建设性的改进建议。该评估工作实在7个不同的数据集中训练了12000个模型,并涵盖了最重要的方法和评估指标。重要的是,作者还发布了本研究中的相关代码及一万多个预训练模型,由此产生的工具包(disentanglement_lib),允许研究人员基于此进行自己的研究工作,并轻松重现我们的研究工作。

640?wx_fmt=gif

本文从理论和实践两个维度进行了细致验证,具体的贡献点可概括如下:

  • 从理论上:如果没有考虑学习方法与数据集所产生的归纳偏置,那么基本无法实现分离式表示的无监督学习过程。

  • 从实践上:在大规模可重复的实验研究中,分析了当前主流方法和其归纳偏置,该研究采用了完善的无监督分离式实验方案,本文实现了六种最新的无监督分离式学习方法,并在7个数据集中训练了12000个模型。

  • 发布了disentanglement_lib,用于供其他研究人员重现我们的工作。

  • 挑战了分离式无监督学习中的一些共识:

    • 观察到表示维度具有一定的相关性

    • 初始种子与超参数似乎比模型选择更加的重要,没有发现任何证据表明模型可以通过无监督方式可靠的学习到分离式表示特征,另外如果无法访问到ground-truth标签,即使能够迁移预训练得到的超参数,似乎也无法得出高质量的结果。

    • 目前没有很强的证据表明,分离式特征对下游任务是有效的,例如通过降低学习的样本复杂性。


2、Rates of Convergence for Sparse Variational Gaussian Process Regression


640?wx_fmt=png


目前实现的高斯过程后验的变分近似算法,可以有效降低数据集计算成本复杂度。虽然计算成本似乎是随数据集规模线性增长的,但算法真正的复杂性却取决于如何增加诱导变量的数量,来保证一定的近似质量。


研究人员通过KL散度的上界特性来解决这一问题,证明了在高概率情况下,诱导变量数目的增长速度比数据集规模要慢。例如,对于具有D维的整体分布回归,使用流行的Squared Exponential核就足够了。结果表明,随着数据集增长,高斯过程后验可以真正近似地逼近目标,并为如何在连续学习场景中增加诱导变量提供具体的规则。


640?wx_fmt=png

推荐阅读

世界最大的色情网站要收购汤不热,色上加色???

送给小白的 7 个 python 小坑

机器学习特训营,硅谷导师直播授课,现加入仅需68元!

Python 编码的这些坑,你还在踩吗!?

这个大学生在校园测试5G网络的视频火了!

640?wx_fmt=png

喜欢就点击“在看”吧!

这篇关于ICML2019最佳论文奖新鲜发布,Google、ETH、MaxPlanck、剑桥成最终赢家的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/588604

相关文章

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

修复已被利用的高危漏洞! macOS Sequoia 15.6.1发布

《修复已被利用的高危漏洞!macOSSequoia15.6.1发布》苹果公司于今日发布了macOSSequoia15.6.1更新,这是去年9月推出的macOSSequoia操作... MACOS Sequoia 15.6.1 正式发布!此次更新修复了一个已被黑客利用的严重安全漏洞,并解决了部分中文用户反馈的

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Java Stream 的 Collectors.toMap高级应用与最佳实践

《JavaStream的Collectors.toMap高级应用与最佳实践》文章讲解JavaStreamAPI中Collectors.toMap的使用,涵盖基础语法、键冲突处理、自定义Map... 目录一、基础用法回顾二、处理键冲突三、自定义 Map 实现类型四、处理 null 值五、复杂值类型转换六、处理

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Zabbix在MySQL性能监控方面的运用及最佳实践记录

《Zabbix在MySQL性能监控方面的运用及最佳实践记录》Zabbix通过自定义脚本和内置模板监控MySQL核心指标(连接、查询、资源、复制),支持自动发现多实例及告警通知,结合可视化仪表盘,可有效... 目录一、核心监控指标及配置1. 关键监控指标示例2. 配置方法二、自动发现与多实例管理1. 实践步骤

MySQL 迁移至 Doris 最佳实践方案(最新整理)

《MySQL迁移至Doris最佳实践方案(最新整理)》本文将深入剖析三种经过实践验证的MySQL迁移至Doris的最佳方案,涵盖全量迁移、增量同步、混合迁移以及基于CDC(ChangeData... 目录一、China编程JDBC Catalog 联邦查询方案(适合跨库实时查询)1. 方案概述2. 环境要求3.