LinkedBlockingQueue原理探究

2024-01-09 19:52

本文主要是介绍LinkedBlockingQueue原理探究,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

类图结构

同样首先看一下LinkedBlockingQueue的类图结构,以便从全局对LinkedBlockingQueue有个直观的了解。

在这里插入图片描述
由类图可以看到,LinkedBlockingQueue也是使用单向链表实现的,其也有两个Node,分别用来存放首、尾节点,并且还有一个初始值为0的原子变量count,用来记录队列元素个数。

另外还有两个ReentrantLock的实例,分别用来控制元素入队和出队的原子性,其中takeLock用来控制同时只有一个线程可以从队列头获取元素,其他线程必须等待,putLock控制同时只能有一个线程可以获取锁,在队列尾部添加元素,其他线程必须等待。

另外,notEmpty和notFull是条件变量,它们内部都有一个条件队列用来存放进队和出队时被阻塞的线程,其实这是生产者—消费者模型。

在这里插入图片描述

  • 当调用线程在LinkedBlockingQueue实例上执行take、poll等操作时需要获取到takeLock锁,从而保证同时只有一个线程可以操作链表头节点。

    另外由于条件变量notEmpty内部的条件队列的维护使用的是takeLock的锁状态管理机制,所以在调用notEmpty的await和signal方法前调用线程必须先获取到takeLock锁,否则会抛出IllegalMonitorStateException异常。

    notEmpty内部则维护着一个条件队列,当线程获取到takeLock锁后调用notEmpty的await方法时,调用线程会被阻塞,然后该线程会被放到notEmpty内部的条件队列进行等待,直到有线程调用了notEmpty的signal方法。

  • 在LinkedBlockingQueue实例上执行put、offer等操作时需要获取到putLock锁,从而保证同时只有一个线程可以操作链表尾节点。

    同样由于条件变量notFull内部的条件队列的维护使用的是putLock的锁状态管理机制,所以在调用notFull的await和signal方法前调用线程必须先获取到putLock锁,否则会抛出IllegalMonitorStateException异常。

    notFull内部则维护着一个条件队列,当线程获取到putLock锁后调用notFull的await方法时,调用线程会被阻塞,然后该线程会被放到notFull内部的条件队列进行等待,直到有线程调用了notFull的signal方法。

在这里插入图片描述
默认队列容量为0x7fmf,用户也可以自己指定容量,所以从一定程度上可以说LinkedBlockingQueue是有界阻塞队列。

LinkedBlockingQueue原理介绍

offer操作

向队列尾部插入一个元素,如果队列中有空闲则插入成功后返回true,如果队列已满则丢弃当前元素然后返回false。

如果e元素为null则抛出NullPointerException异常。另外,该方法是非阻塞的。

在这里插入图片描述
在这里插入图片描述

put操作

向队列尾部插入一个元素,如果队列中有空闲则插入后直接返回,如果队列已满则阻塞当前线程,直到队列有空闲插入成功后返回。

如果在阻塞时被其他线程设置了中断标志,则被阻塞线程会抛出InterruptedException异常而返回。

另外,如果e元素为null则抛出NullPointerException异常。

在这里插入图片描述

poll操作

从队列头部获取并移除一个元素,如果队列为空则返回null,该方法是不阻塞的。
在这里插入图片描述
在这里插入图片描述

peek操作

获取队列头部元素但是不从队列里面移除它,如果队列为空则返回null。该方法是不阻塞的。
在这里插入图片描述

take操作

获取当前队列头部元素并从队列里面移除它。

如果队列为空则阻塞当前线程直到队列不为空然后返回元素,如果在阻塞时被其他线程设置了中断标志,则被阻塞线程会抛出InterruptedException异常而返回。

在这里插入图片描述

remove操作

删除队列里面指定的元素,有则删除并返回true,没有则返回false。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

size操作

获取当前队列元素个数。

在这里插入图片描述
在这里插入图片描述

这篇关于LinkedBlockingQueue原理探究的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/588258

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、