无失真编码之霍夫曼编码的python实现——数字图像处理

2024-01-09 09:04

本文主要是介绍无失真编码之霍夫曼编码的python实现——数字图像处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原理

无失真编码是一种数据压缩技术,其中原始数据在压缩后可以完全无损地恢复。霍夫曼编码是一种广泛使用的无失真编码方法。它基于字符出现的频率构建一个最优的前缀编码树,其中没有任何编码是另一个编码的前缀。这样,即使在压缩后,原始数据也可以完全无误地被解码和恢复。霍夫曼编码的原理可以分为以下几个步骤:

1. 统计字符频率
首先,统计待编码数据中每个字符的出现频率。这个频率信息是构建霍夫曼树的基础。

2. 构建霍夫曼树
霍夫曼树的构建过程如下:
为数据中的每个不同字符创建一个叶子节点,并将其频率作为节点的权重。
将所有节点按照频率(权重)排序,放入一个优先队列(如最小堆)中。
当队列中有多于一个节点时,执行以下操作:
从队列中移除两个频率最低的节点。
创建一个新的内部节点,其频率是这两个节点频率之和。
将这两个节点作为新节点的子节点,一个为左子节点,一个为右子节点。
将新节点重新加入队列。
这个过程重复进行,直至队列中只剩下一个节点,这个节点成为霍夫曼树的根节点。

3. 生成霍夫曼编码
对霍夫曼树进行遍历(例如深度优先遍历),为每个叶子节点分配一个二进制编码。从根到叶子的每条路径定义了相应字符的编码。一般约定,向左的路径代表’0’,向右的路径代表’1’。

4. 编码数据
根据霍夫曼树得到的编码,替换原始数据中的每个字符,完成数据的编码过程。

解码数据
由于霍夫曼编码是前缀编码,任何编码都不是另一个编码的前缀,因此可以无误地从编码数据中恢复原始数据。

优点
霍夫曼编码的主要优点在于其根据字符出现的频率生成编码,使得频率高的字符具有较短的编码,频率低的字符具有较长的编码。这种方法通常能生成接近最优的无失真压缩率。

应用
霍夫曼编码在文件压缩(如 ZIP 文件格式)和多媒体数据压缩(如 JPEG 和 MP3)中得到了广泛应用。由于其无失真的特性,它在需要完整恢复原始数据的场景中非常有用。

代码要求实现下图

在这里插入图片描述

提示

结果显示了图像中灰度值经过霍夫曼编码后的码表,如灰度值128被编码为长度为1的码字“0”,灰度值87被编码为长度为2的码字“10”等。注意:霍夫曼编码所构造的码表不是唯一的,你的实验结果可能和上图所示不同。
第一步,读入图像并计算其直方图,统计其各灰度值出现的概率(次数)。注意,统计直方图所用函数为hist = cv2.calcHist([img], [0], None, [256], [0, 256])。
第二步,针对各灰度值出现的概率大小进行排序、合并(信源化简),此过程构造出一颗霍夫曼树,可以使用python中queue模块中的PriorityQueue数据结构编写代码。
第三步,根据上一步得到的霍夫曼树进行逆向编码,得到每一个灰度值对应的码字。这一步可以从根节点出发,通过不断给其子节点添加1比特码字的嵌套迭代过程实现。

python代码

import cv2
import numpy as np
from queue import PriorityQueuedef huffman_tree_to_table(root, prefix, table):if type(root[1]) != tuple:table[root[1]] = prefixelse:huffman_tree_to_table(root[1][0], prefix+'0', table)huffman_tree_to_table(root[1][1], prefix+'1', table)return tableimg = cv2.imread('Fig0801.tif', 0)
hist = cv2.calcHist([img], [0], None, [256], [0, 256])
gray_value = np.flatnonzero(hist)queue_ = PriorityQueue()
for value in gray_value:queue_.put((hist[value], value))while queue_.qsize() > 1:node1 = queue_.get()node2 = queue_.get()new_count = node1[0] + node2[0]queue_.put((new_count, (node1, node2)))root = queue_.get()
table = huffman_tree_to_table(root, '', {})print(table)

结果展示

在这里插入图片描述

这篇关于无失真编码之霍夫曼编码的python实现——数字图像处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/586597

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法