无失真编码之霍夫曼编码的python实现——数字图像处理

2024-01-09 09:04

本文主要是介绍无失真编码之霍夫曼编码的python实现——数字图像处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原理

无失真编码是一种数据压缩技术,其中原始数据在压缩后可以完全无损地恢复。霍夫曼编码是一种广泛使用的无失真编码方法。它基于字符出现的频率构建一个最优的前缀编码树,其中没有任何编码是另一个编码的前缀。这样,即使在压缩后,原始数据也可以完全无误地被解码和恢复。霍夫曼编码的原理可以分为以下几个步骤:

1. 统计字符频率
首先,统计待编码数据中每个字符的出现频率。这个频率信息是构建霍夫曼树的基础。

2. 构建霍夫曼树
霍夫曼树的构建过程如下:
为数据中的每个不同字符创建一个叶子节点,并将其频率作为节点的权重。
将所有节点按照频率(权重)排序,放入一个优先队列(如最小堆)中。
当队列中有多于一个节点时,执行以下操作:
从队列中移除两个频率最低的节点。
创建一个新的内部节点,其频率是这两个节点频率之和。
将这两个节点作为新节点的子节点,一个为左子节点,一个为右子节点。
将新节点重新加入队列。
这个过程重复进行,直至队列中只剩下一个节点,这个节点成为霍夫曼树的根节点。

3. 生成霍夫曼编码
对霍夫曼树进行遍历(例如深度优先遍历),为每个叶子节点分配一个二进制编码。从根到叶子的每条路径定义了相应字符的编码。一般约定,向左的路径代表’0’,向右的路径代表’1’。

4. 编码数据
根据霍夫曼树得到的编码,替换原始数据中的每个字符,完成数据的编码过程。

解码数据
由于霍夫曼编码是前缀编码,任何编码都不是另一个编码的前缀,因此可以无误地从编码数据中恢复原始数据。

优点
霍夫曼编码的主要优点在于其根据字符出现的频率生成编码,使得频率高的字符具有较短的编码,频率低的字符具有较长的编码。这种方法通常能生成接近最优的无失真压缩率。

应用
霍夫曼编码在文件压缩(如 ZIP 文件格式)和多媒体数据压缩(如 JPEG 和 MP3)中得到了广泛应用。由于其无失真的特性,它在需要完整恢复原始数据的场景中非常有用。

代码要求实现下图

在这里插入图片描述

提示

结果显示了图像中灰度值经过霍夫曼编码后的码表,如灰度值128被编码为长度为1的码字“0”,灰度值87被编码为长度为2的码字“10”等。注意:霍夫曼编码所构造的码表不是唯一的,你的实验结果可能和上图所示不同。
第一步,读入图像并计算其直方图,统计其各灰度值出现的概率(次数)。注意,统计直方图所用函数为hist = cv2.calcHist([img], [0], None, [256], [0, 256])。
第二步,针对各灰度值出现的概率大小进行排序、合并(信源化简),此过程构造出一颗霍夫曼树,可以使用python中queue模块中的PriorityQueue数据结构编写代码。
第三步,根据上一步得到的霍夫曼树进行逆向编码,得到每一个灰度值对应的码字。这一步可以从根节点出发,通过不断给其子节点添加1比特码字的嵌套迭代过程实现。

python代码

import cv2
import numpy as np
from queue import PriorityQueuedef huffman_tree_to_table(root, prefix, table):if type(root[1]) != tuple:table[root[1]] = prefixelse:huffman_tree_to_table(root[1][0], prefix+'0', table)huffman_tree_to_table(root[1][1], prefix+'1', table)return tableimg = cv2.imread('Fig0801.tif', 0)
hist = cv2.calcHist([img], [0], None, [256], [0, 256])
gray_value = np.flatnonzero(hist)queue_ = PriorityQueue()
for value in gray_value:queue_.put((hist[value], value))while queue_.qsize() > 1:node1 = queue_.get()node2 = queue_.get()new_count = node1[0] + node2[0]queue_.put((new_count, (node1, node2)))root = queue_.get()
table = huffman_tree_to_table(root, '', {})print(table)

结果展示

在这里插入图片描述

这篇关于无失真编码之霍夫曼编码的python实现——数字图像处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/586597

相关文章

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e