最优化理论分析复习--最优性条件(一)

2024-01-09 01:28

本文主要是介绍最优化理论分析复习--最优性条件(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 上一篇
  • 无约束问题的极值条件
  • 约束极值问题的最优性条件
  • 基本概念
    • 只有不等式约束时
  • 下一篇

上一篇

最优化理论复习–对偶单纯形方法及灵敏度分析

无约束问题的极值条件

由于是拓展到向量空间 R n R^n Rn, 所以可由高数中的极值条件进行类比

  1. 一阶必要条件
    设函数 f ( x ) f(x) f(x) 在点 x ˉ \bar{x} xˉ 处可微, 若 x ˉ \bar{x} xˉ 是局部极小点,则 ▽ f ( x ˉ ) = 0 \bigtriangledown f(\bar{x}) = 0 f(xˉ)=0
    类比于若 x ˉ \bar{x} xˉ 是极小值点则 f ′ ( x ˉ ) = 0 f'(\bar{x}) = 0 f(xˉ)=0

  2. 二阶必要条件
    f ( x ) f(x) f(x) x ˉ \bar{x} xˉ 处二阶可微,若 x ˉ \bar{x} xˉ 是局部极小点, 则 ▽ f ( x ˉ ) = 0 \bigtriangledown f(\bar{x}) = 0 f(xˉ)=0, 且 H e s s i a n Hessian Hessian 矩阵 ▽ 2 f ( x ˉ ) \bigtriangledown^2f(\bar{x}) 2f(xˉ) 是半正定的。
    类比于 若 x ˉ \bar{x} xˉ是极小值点则 f ′ ( x ˉ ) = 0 , 且 f ′ ′ ( x ˉ ) ≥ 0 f'(\bar{x}) = 0, 且 f''(\bar{x}) \geq 0 f(xˉ)=0,f(xˉ)0

  3. 二阶充分条件
    设函数 f ( x ) f(x) f(x) 在点 x ˉ \bar{x} xˉ 处二次可微,若梯度 ▽ f ( x ˉ ) = 0 \bigtriangledown f(\bar{x}) = 0 f(xˉ)=0, 且 H e s s i a n Hessian Hessian 矩阵 ▽ 2 f ( x ˉ ) 正 定 \bigtriangledown^2f(\bar{x})正定 2f(xˉ), 则 x ˉ \bar{x} xˉ是严格局部极小点。
    类比于 f ′ ( x ˉ ) = 0 , f ′ ′ ( x ˉ ) > 0 f'(\bar{x}) = 0, f''(\bar{x}) > 0 f(xˉ)=0,f(xˉ)>0 x ˉ \bar{x} xˉ 是极小值点

  4. 充要条件
    f ( x ) f(x) f(x) 是定义在 R n R^n Rn 上的可微凸函数 x ˉ ∈ R n \bar{x} \in R^n xˉRn, 则 x ˉ \bar{x} xˉ 为整体极小点的充要条件是 ▽ f ( x ˉ ) = 0 \bigtriangledown f(\bar{x}) = 0 f(xˉ)=0
    注:如果 f ( x ) f(x) f(x) 是严格凸的,则全局极小点是唯一的。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

约束极值问题的最优性条件

基本概念

定义: 对 m i n f ( x ) min f(x) minf(x), 设 x ˉ ∈ R n \bar{x} \in R^n xˉRn 是任给一点, d ≠ 0 d \not = 0 d=0, 若存在 δ > 0 \delta > 0 δ>0, 使得对任意的 λ ∈ ( 0 , δ ) \lambda \in (0, \delta) λ(0,δ), 有 f ( x ˉ + λ d ) < f ( x ˉ ) f (\bar{x} + \lambda d) < f(\bar{x}) f(xˉ+λd)<f(xˉ), 则称 d d d f ( x ) f(x) f(x) 在点 x ˉ \bar{x} xˉ 处的下降方向。

  1. 引理: 设函数 f ( x ) f(x) f(x) 在点 x ˉ \bar{x} xˉ 可微, 若存在 d ≠ 0 d \not = 0 d=0, 使得 ▽ f ( x ˉ ) T d < 0 \bigtriangledown f(\bar{x})^T d < 0 f(xˉ)Td<0, 则存在 δ > 0 \delta > 0 δ>0, 是使得对 ∀ λ ∈ ( 0 , δ ) \forall \lambda \in (0, \delta) λ(0,δ), 有 f ( x ˉ + λ d ) < f ( x ˉ ) f(\bar{x} + \lambda d)<f(\bar{x}) f(xˉ+λd)<f(xˉ)
    与梯度方向成钝角的方向是下降方向
    表示为
    F 0 = { d ∣ ▽ f ( x ˉ ) T d < 0 } F_0 = \{ d | \bigtriangledown f(\bar{x})^T d < 0\} F0={df(xˉ)Td<0}

  2. 定义: 设集合 S ⊂ R n , x ˉ ∈ c l S . S \subset R^n, \bar{x} \in clS. SRn,xˉclS., d d d 为非零向量, 若存在数 δ > 0 \delta > 0 δ>0, 使得对任意 λ ∈ ( 0 , δ ) , \lambda \in (0, \delta), λ(0,δ), 都有 x ˉ + λ d ∈ S \bar{x} + \lambda d \in S xˉ+λdS 则称 d d d 为集合 S S S x ˉ \bar{x} xˉ 的可行方向。
    就是移动方向在可行域内
    表示为 D = { d ∣ d ≠ 0 , x ˉ ∈ c l S , ∃ δ > 0 , ∀ λ ∈ ( 0 , δ ) , 有 x ˉ + λ d ∈ S } D = \{ d | d \not = 0, \bar{x} \in clS, \exists \delta > 0, \forall \lambda \in (0, \delta), 有 \bar{x} + \lambda d \in S \} D={dd=0,xˉclS,δ>0,λ(0,δ),xˉ+λdS}
    x ˉ 处 的 可 行 方 向 锥 \bar{x} 处的可行方向锥 xˉ

  3. 定义: 若问题的可行点 x ˉ \bar{x} xˉ 是某个不等式约束 g i ( x ) ≥ 0 g_i(x) \geq 0 gi(x)0 变成等式, 则该不等式约束称为关于可行点 x ˉ \bar{x} xˉ 的起作用约束; 否则称为不起作用约束。
    表示为
    I = { i ∣ g i ( x ˉ = 0 , x ˉ ∈ S ) } I = \{ i| g_i(\bar{x} = 0, \bar{x} \in S) \} I={igi(xˉ=0,xˉS)}

  4. 定义:在起作用约束作对应切线,获得对应梯度,与这两个梯度同时呈锐角的方向为积极约束的可行方向。
    表示为 G 0 = { d ∣ ▽ g i ( x ˉ ) T d > 0 , i ∈ I ( x ) } G_0 = \{d | \bigtriangledown g_i(\bar{x})^T d > 0, i \in I(x) \} G0={dgi(xˉ)Td>0,iI(x)}
    即由约束条件求出的可行方向
    G 0 ⊂ D G_0 \subset D G0D
    问题标准形式:
    m i n f ( x ) \ \ \ \ \ \ \ \ min f(x)         minf(x)

s . t . { g i ( x ) ≥ 0 , 不 等 式 约 束 h j ( x ) = 0 , 等 式 约 束 x ∈ R n s.t.\left \{\begin{matrix} g_i (x) \geq 0,不等式约束 \\ \\h_j(x) = 0,等式约束 \\ \\ x \in R^n \end {matrix} \right. s.t.gi(x)0hj(x)=0xRn

几何最优性条件:设 S S S R n R^n Rn 的非空集合, x ˉ ∈ S , f ( x ) \bar{x} \in S, f(x) xˉS,f(x) x ˉ \bar{x} xˉ 处可微, 若 x ˉ \bar{x} xˉ 是局部最优解, 则 F 0 ∩ D = ∅ F_0 \cap D = \emptyset F0D=
即所有的可行方向都是上升方向

只有不等式约束时

由于 G 0 ⊂ D G_0 \subset D G0D 所以也有 F 0 ∩ G 0 = ∅ F_0 \cap G_0 = \emptyset F0G0=,可行域之内不能有空洞

  • (F-J条件) 设 x ˉ ∈ S , I = { i ∣ g i ( x ˉ ) = 0 } , f ( x ) , g i ( x ) ( i ∈ I ) \bar{x} \in S, I = \{ i | g_i(\bar{x}) = 0\}, f(x), g_i(x) (i \in I) xˉS,I={igi(xˉ)=0},f(x),gi(x)(iI) x ˉ \bar{x} xˉ 处可微, g i ( x ) ( i ∉ I ) g_i(x) (i \notin I) gi(x)(i/I) x ˉ \bar{x} xˉ 处连续, 若 x ˉ \bar{x} xˉ 是问题的最优解,则存在不全为零的数 w 0 , w i ( i ∈ I ) w_0, w_i (i \in I) w0,wi(iI) 使得
    w 0 ▽ f ( x ˉ ) − ∑ i ∈ I w i ▽ g i ( x ˉ ) = 0 w_0 \bigtriangledown f(\bar{x}) - \sum\limits_{i \in I} w_i \bigtriangledown g_i(\bar{x}) = 0 w0f(xˉ)iIwigi(xˉ)=0
    x ˉ \bar{x} xˉ F − J F-J FJ
    为必要条件,极小值点一定是 F-J点, 但 F-J点不一定为极小值点

在这里插入图片描述

在这里插入图片描述
w 0 = 0 w_0 = 0 w0=0 是另外另个约束条件的梯度必须能相互抵消,这种情况才有最优解,因此更多的是关注 w 0 ≠ 0 w_0 \not = 0 w0=0的情况

  • (KKT条件) 设 x ˉ ∈ S \bar{x} \in S xˉS , f , g i ( i ∈ I ) 在 x ˉ 处 可 微 , g i ( i ∉ I ) 在 x ˉ 连 续 f, g_i(i \in I)在\bar{x} 处可微, g_i(i \notin I) 在\bar{x}连续 f,gi(iI)xˉ,gi(i/I)xˉ(保证无空洞), { ▽ g i ( x ˉ ) ∣ i ∈ I } 线 性 无 关 \{ \bigtriangledown g_i(\bar{x}) | i \in I\} 线性无关 {gi(xˉ)iI}线, 若 x ˉ \bar{x} xˉ 是局部最优解, 则存在非负数 w i , i ∈ I , w_i, i \in I, wi,iI, 使得
    ▽ f ( x ˉ ) − ∑ i ∈ I w i ▽ g i ( x ˉ ) = 0 \bigtriangledown f(\bar{x}) - \sum\limits_{i \in I} w_i \bigtriangledown g_i(\bar{x}) = 0 f(xˉ)iIwigi(xˉ)=0

在这里插入图片描述
凸规划的判别方法:

  1. 可行域是凸集, 目标函数是凸函数
  2. 可行域是 ≥ \geq 的凹函数, 目标函数是凸函数

求KKT点

  • KKT条件的另一种表述
    x ˉ ∈ S \bar{x} \in S xˉS , f , g i ( i ∈ I ) 在 x ˉ f, g_i(i \in I)在\bar{x} f,gi(iI)xˉ 处可微, { ▽ g i ( x ˉ ) ∣ i ∈ I } 线 性 无 关 \{ \bigtriangledown g_i(\bar{x}) | i \in I\}线性无关 {gi(xˉ)iI}线, 若 x ˉ \bar{x} xˉ 是局部最优解, 则存在非负数 w i , i = 1 , 2... m w_i, i =1,2...m wi,i=1,2...m 使得
    { ▽ f ( x ˉ ) − ∑ i = 1 m w i ▽ g i ( x ˉ ) = 0 ( 没 要 求 对 应 的 g i ( x ) 为 约 束 条 件 ) w i g i ( x ˉ ) = 0 , i = 1 , 2... m ( 互 补 松 弛 条 件 ) w i ≥ 0 i = 1 , 2... m \left \{\begin{matrix} \bigtriangledown f(\bar{x}) - \sum\limits_{i = 1}^{m} w_i \bigtriangledown g_i(\bar{x}) = 0(没要求对应的g_i(x)为约束条件) \\ \\w_ig_i(\bar{x}) = 0, i = 1, 2...m (互补松弛条件) \\ \\ w_i \geq 0 i = 1,2...m \end {matrix} \right. f(xˉ)i=1mwigi(xˉ)=0(gi(x))wigi(xˉ)=0,i=1,2...mwi0i=1,2...m

通过这个表述方式,加上原来的约束然后将所有的方程列出来求解
在这里插入图片描述
在这里插入图片描述
有人会算的话请留言,感谢

下一篇

最优化理论复习–最优性条件(二)

这篇关于最优化理论分析复习--最优性条件(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/585491

相关文章

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Java中Switch Case多个条件处理方法举例

《Java中SwitchCase多个条件处理方法举例》Java中switch语句用于根据变量值执行不同代码块,适用于多个条件的处理,:本文主要介绍Java中SwitchCase多个条件处理的相... 目录前言基本语法处理多个条件示例1:合并相同代码的多个case示例2:通过字符串合并多个case进阶用法使用

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

SpringBoot条件注解核心作用与使用场景详解

《SpringBoot条件注解核心作用与使用场景详解》SpringBoot的条件注解为开发者提供了强大的动态配置能力,理解其原理和适用场景是构建灵活、可扩展应用的关键,本文将系统梳理所有常用的条件注... 目录引言一、条件注解的核心机制二、SpringBoot内置条件注解详解1、@ConditionalOn

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java