Python 全栈体系【四阶】(十一)

2024-01-08 23:52

本文主要是介绍Python 全栈体系【四阶】(十一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第四章 机器学习

机器学习:

  • 传统的机器学习:以算法为核心
  • 深度学习:以数据和计算为核心

感知机 perceptron(人工神经元)

  • 可以做简单的分类任务
  • 掀起了第一波 AI 浪潮

感知机不能解决线性不可分问题,浪潮跌入谷底

线性不可分的问题在理论界上被解决了:MLP

  • 掀起了第二波 AI 浪潮

由于当时是 80 年代,算力很差,第二波浪潮跌入谷底。

在同一时期,SVM 的出现,通过升维变换的方式解决了线性不可分问题。

1998 年,YanleCun 提出来 Lenet5,CNN

2006 年,杰弗里辛顿 DBN 掀起了第三波 AI 浪潮

十四、支持向量机

1. 基本概念

1.1 什么是支持向量机

支持向量机(Support Vector Machines)是一种二分类模型,在机器学习、计算机视觉、数据挖掘中广泛应用,主要用于解决数据分类问题,它的目的是寻找一个超平面来对样本进行分割,分割的原则是间隔最大化(即数据集的边缘点到分界线的距离 d 最大,如下图),最终转化为一个凸二次规划问题来求解。通常 SVM 用于二元分类问题,对于多元分类可将其分解为多个二元分类问题,再进行分类。所谓“支持向量”,就是下图中虚线穿过的边缘点。支持向量机就对应着能将数据正确划分并且间隔最大的直线(下图中红色直线)。

在这里插入图片描述

1.2 最优分类边界

什么才是最优分类边界?什么条件下的分类边界为最优边界呢?

在这里插入图片描述

如图中的 A,B 两个样本点,B 点被预测为正类的确信度要大于 A 点,所以 SVM 的目标是寻找一个超平面,使得离超平面较近的异类点之间能有更大的间隔,即不必考虑所有样本点,只需让求得的超平面使得离它近的点间隔最大。超平面可以用如下线性方程来描述:

w T x + b = 0 w^T x + b = 0 wTx+b=0

其中, x = ( x 1 ; x 2 ; . . . ; x n ) x=(x_1;x_2;...;x_n) x=(x1;x2;...;xn) w = ( w 1 ; w 2 ; . . . ; w n ) w=(w_1;w_2;...;w_n) w=(w1;w2;...;wn) b b b为偏置项。可以从数学上证明,支持向量到超平面距离为:

γ = 1 ∣ ∣ w ∣ ∣ \gamma = \frac{1}{||w||} γ=∣∣w∣∣1

为了使距离最大,只需最小化 ∣ ∣ w ∣ ∣ ||w|| ∣∣w∣∣即可。

1.3 SVM 最优边界要求

SVM 寻找最优边界时,需满足以下几个要求:

(1)正确性:对大部分样本都可以正确划分类别;

(2)安全性:支持向量,即离分类边界最近的样本之间的距离最远;

(3)公平性:支持向量与分类边界的距离相等;

(4)简单性:采用线性方程(直线、平面)表示分类边界,也称分割超平面。如果在原始维度中无法做线性划分,那么就通过升维变换,在更高维度空间寻求线性分割超平面。从低纬度空间到高纬度空间的变换通过核函数进行。

1.4 线性可分与线性不可分
1.4.1 线性可分

如果一组样本能使用一个线性函数将样本正确分类,称这些数据样本是线性可分的。那么什么是线性函数呢?在二维空间中就是一条直线,在三维空间中就是一个平面,以此类推,如果不考虑空间维数,这样的线性函数统称为超平面。

1.4.2 线性不可分

如果一组样本,无法找到一个线性函数将样本正确分类,则称这些样本线性不可分。以下是一个一维线性不可分的示例:

在这里插入图片描述

一维线性不可分

以下是一个二维不可分的示例:

在这里插入图片描述

二维线性不可分

对于该类线性不可分问题,可以通过升维,将低纬度特征空间映射为高纬度特征空间,实现线性可分,如下图所示:

在这里插入图片描述

一维空间升至二维空间实现线性可分

在这里插入图片描述

二维空间升至三维空间实现线性可分

那么如何实现升维?这就需要用到核函数。

2. 核函数

通过名为核函数的特征变换,增加新的特征,使得低维度线性不可分问题变为高维度线性可分问题。如果低维空间存在 K(x,y),x,y∈Χ,使得 K(x,y)=ϕ(x)·ϕ(y),则称 K(x,y)为核函数,其中 ϕ(x)·ϕ(y)为 x,y 映射到特征空间上的内积,ϕ(x)为 X→H 的映射函数。以下是几种常用的核函数。

2.1 线性核函数

线性核函数(Linear)表示不通过核函数进行升维,仅在原始空间寻求线性分类边界,主要用于线性可分问题。

示例代码:

# 支持向量机示例
import numpy as np
import sklearn.model_selection as ms
import sklearn.svm as svm
import sklearn.metrics as sm
import matplotlib.pyplot as mpx, y = [], []
with open("../data/multiple2.txt", "r") as f:for line in f.readlines():data = [float(substr) for substr in line.split(",")]x.append(data[:-1])  # 输入y.append(data[-1])  # 输出# 列表转数组
x = np.array(x)
y = np.array(y, dtype=int)# 线性核函数支持向量机分类器
model = svm.SVC(kernel="linear")  # 线性核函数
# model = svm.SVC(kernel="poly", degree=3)  # 多项式核函数
# print("gamma:", model.gamma)
# 径向基核函数支持向量机分类器
# model = svm.SVC(kernel="rbf",
#                 gamma=0.01,  # 概率密度标准差
#                 C=200)  # 概率强度
model.fit(x, y)# 计算图形边界
l, r, h = x[:, 0].min() - 1, x[:, 0].max() + 1, 0.005
b, t, v = x[:, 1].min() - 1, x[:, 1].max() + 1, 0.005# 生成网格矩阵
grid_x = np.meshgrid(np.arange(l, r, h), np.arange(b, t, v))
flat_x = np.c_[grid_x[0].ravel(), grid_x[1].ravel()]  # 合并
flat_y = model.predict(flat_x)  # 根据网格矩阵预测分类
grid_y = flat_y.reshape(grid_x[0].shape)  # 还原形状mp.figure("SVM Classifier", facecolor="lightgray")
mp.title("SVM Classifier", fontsize=14)mp.xlabel("x", fontsize=14)
mp.ylabel("y", fontsize=14)
mp.tick_params(labelsize=10)
mp.pcolormesh(grid_x[0], grid_x[1], grid_y, cmap="gray")C0, C1 = (y == 0), (y == 1)
mp.scatter(x[C0][:, 0], x[C0][:, 1], c="orangered", s=80)
mp.scatter(x[C1][:, 0], x[C1][:, 1], c="limegreen", s=80)
mp.show()

绘制图形:

在这里插入图片描述

2.2 多项式核函数

多项式核函数(Polynomial Kernel)用增加高次项特征的方法做升维变换,当多项式阶数高时复杂度会很高,其表达式为:

K ( x , y ) = ( α x T ⋅ y + c ) d K(x,y)=(αx^T·y+c)d K(xy)=(αxTy+c)d

y = x 1 + x 2 y = x 1 2 + 2 x 1 x 2 + x 2 2 y = x 1 3 + 3 x 1 2 x 2 + 3 x 1 x 2 2 + x 2 3 y = x_1 + x_2\\ y = x_1^2 + 2x_1x_2+x_2^2\\ y=x_1^3 + 3x_1^2x_2 + 3x_1x_2^2 + x_2^3 y=x1+x2y=x12+2x1x2+x22y=x13+3x12x2+3x1x22+x23

其中,α 表示调节参数,d 表示最高次项次数,c 为可选常数。

示例代码(将上一示例中创建支持向量机模型改为一下代码即可):

model = svm.SVC(kernel="poly", degree=3)  # 多项式核函数

生成图像:

在这里插入图片描述

2.3 径向基核函数

径向基核函数(Radial Basis Function Kernel)具有很强的灵活性,应用很广泛。与多项式核函数相比,它的参数少,因此大多数情况下,都有比较好的性能。在不确定用哪种核函数时,可优先验证高斯核函数。由于类似于高斯函数,所以也称其为高斯核函数。表达式如下:

示例代码(将上一示例中分类器模型改为如下代码即可):

# 径向基核函数支持向量机分类器
model = svm.SVC(kernel="rbf",gamma=0.01, # 概率密度标准差C=600)  # 概率强度,该值越大对错误分类的容忍度越小,分类精度越高,但泛化能力越差;该值越小,对错误分类容忍度越大,但泛化能力强

生成图像:

在这里插入图片描述

3. 总结

(1)支持向量机是二分类模型

(2)支持向量机通过寻找最优线性模型作为分类边界

(3)边界要求:正确性、公平性、安全性、简单性

(4)可以通过核函数将线性不可分转换为线性可分问题,核函数包括:线性核函数、多项式核函数、径向基核函数

(5)支持向量机适合少量样本的分类

4. 网格搜索

获取一个最优超参数的方式可以绘制验证曲线,但是验证曲线只能每次获取一个最优超参数。如果多个超参数有很多排列组合的话,就可以使用网格搜索寻求最优超参数组合。

针对超参数组合列表中的每一个超参数组合,实例化给定的模型,做 cv 次交叉验证,将其中平均 f1 得分最高的超参数组合作为最佳选择,实例化模型对象。

网格搜索相关 API:

import sklearn.model_selection as ms
params =
[{'kernel':['linear'], 'C':[1, 10, 100, 1000]},{'kernel':['poly'], 'C':[1], 'degree':[2, 3]},{'kernel':['rbf'], 'C':[1,10,100], 'gamma':[1, 0.1, 0.01]}]model = ms.GridSearchCV(模型, params, cv=交叉验证次数)
model.fit(输入集,输出集)
# 获取网格搜索每个参数组合
model.cv_results_['params']
# 获取网格搜索每个参数组合所对应的平均测试分值
model.cv_results_['mean_test_score']
# 获取最好的参数
model.best_params_
model.best_score_
model.best_estimator_

这篇关于Python 全栈体系【四阶】(十一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/585284

相关文章

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息