文本可视化之词云图的使用

2024-01-08 16:44

本文主要是介绍文本可视化之词云图的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

环境安装:
pip install  wordcloud -i  https://pypi.tuna.tsinghua.edu.cn/simple/ 
conda install  wordcloud
# -i 后面加镜像源网站

WordCloud(background_color,repeat,max_words=600,height=480, width=584, max_font_size,font_path colormap,mask,mode,collocations, prefer_horizontal)

相关参数:

  • background_color=‘white’, # 词云图的背景颜色,默认为 "black"
  • repeat=False, # 是否重复
  • max_words=600, # 词云图中显示的最大词语数量,默认为 200
  • height=480, width=584, # 图片尺寸
  • max_font_size=200, # 词云图中显示的最大字体大小,默认为 None
  • font_path=“C:/Windows/Fonts/FZSTK.TTF”, # 指定字体文件的路径,用于显示中文字符
  • colormap=“Reds”, # 指定词云图的颜色方案,默认为 "viridis"、“Reds”“Blues”“Greens”
  • mask=mask, # 词云图的形状,可以使用一个图片作为模板,一般结合imread(),将图片中不是白色的地方作为轮廓。
  • mode=“RGBA”, # 词云图的模式,可以设置为 "RGB""RGBA"
  • collocations=False# 否考虑词语搭配,默认为 True
  • prefer_horizontal=1# 控制词语水平摆放的频率,默认为 0.9

官方文档:https://github.com/amueller/word_cloud

英文词云图:
import matplotlib.pyplot as plt
from wordcloud import WordCloud# 这里是模拟读取文件 
text="""Python is a popular programming language.
It is widely used for web development, data analysis, and machine learning.
Python has a simple and readable syntax, making it easy to learn and use."""
# 创建词云对象
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(text)# 绘制词云图
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')  # 不显示坐标轴
plt.show()

在这里插入图片描述

注意:英文分隔符是默认空格,所有我们不用对英文进行拆分处理。但是如果是中文,就需要使用jieba分词,需要拆分文字。

其实上面这个例子不是特别全面,应该进行停用词处理,这里给大家讲一下官方给出的例子:

from os import path
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import osfrom wordcloud import WordCloud, STOPWORDS
# 获取当前脚本文件的目录路径,或者如果在IPython笔记本中运行,则获取当前工作目录。
d = path.dirname(__file__) if "__file__" in locals() else os.getcwd()# 读取文件
text = open(path.join(d, 'alice.txt')).read()
# 读取模板图像(就是你可以自定义词云图的样子)
alice_mask = np.array(Image.open(path.join(d, "alice_mask.png")))
# 创建了一个停用词的集合,并添加了一个自定义的停用词"said"
stopwords = set(STOPWORDS)
stopwords.add("said")
# 创建词云图对象
wc = WordCloud(background_color="white", max_words=2000, mask=alice_mask,stopwords=stopwords, contour_width=3, contour_color='steelblue')wc.generate(text)
# 存储
wc.to_file(path.join(d, "alice.png"))
# show
plt.imshow(wc, interpolation='bilinear')
plt.axis("off")
plt.figure()
plt.show()

在这里插入图片描述

注意模板图像一般是黑色的,相当于只填充黑色的地方,我们看一下结果:

在这里插入图片描述

十分优美!

中文词云图:
import numpy as np
import matplotlib.pyplot as plt
from wordcloud import WordCloud
import jieba
from PIL import Image
plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来显示中文,不然会乱码
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
text = """"
人生苦短,我用Python。Python是一门简单易学的编程语言,
广泛应用于数据分析、人工智能和Web开发领域。Python拥有丰富的第三方库和生态系统,
为开发者提供了很多便利。学习Python,让你的编程之路更加愉快。
"""# 使用jieba进行中文分词
seg_list = jieba.cut(text, cut_all=False)
seg_text = ' '.join(seg_list)
print(seg_text)# 创建词云对象   
wordcloud = WordCloud(font_path=r'msyh.ttc',width=800, height=400, background_color='white').generate(seg_text)
# wordcloud = WordCloud(font_path=r'C:/Windows/Fonts/FZSTK.TTF',width=800, height=400, background_color='white').generate(seg_text)
# 绘制词云图 
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')  # 不显示坐标轴
# 保存词云图为图片文件
wordcloud.to_file("wordcloud.png")
plt.show()

在这里插入图片描述

读取本地文件:
from wordcloud import WordCloud, ImageColorGenerator
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
from imageio import imread
text = """Python is a popular programming language.
It is widely used for web development, data analysis, and machine learning.
Python has a simple and readable syntax, making it easy to learn and use."""
# 读取图像并转换为数组mask=np.array(Image.open("./img.png"))# 创建词云对象,并设置 mask 参数
wordcloud = WordCloud(mask=mask,width=800, height=400, background_color='white')# 生成词云图
wordcloud.generate(text)# 显示词云图
plt.axis("off")
plt.imshow(wordcloud, interpolation="bilinear")
plt.show()

在这里插入图片描述

自定义词云形状:
from wordcloud import WordCloud, ImageColorGenerator
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
from imageio import imread
text = """Python is a popular programming language.
It is widely used for web development, data analysis, and machine learning.
Python has a simple and readable syntax, making it easy to learn and use."""
# 读取图像并转换为数组x, y = np.ogrid[:300, :300]mask = (x - 150) ** 2 + (y - 150) ** 2 > 130 ** 2
mask = 255 * mask.astype(int)# 创建词云对象,并设置 mask 参数
wordcloud = WordCloud(mask=mask,width=800, height=400, background_color='white')# 生成词云图
wordcloud.generate(text)# 显示词云图
plt.axis("off")
plt.imshow(wordcloud, interpolation="bilinear")
plt.show()

在这里插入图片描述

总结:

​ 通过本文的介绍,我们深入了解了词云图的使用和相关参数,并学会了生成中文词云图、英文词云图以及自定义词云图的样式。词云图作为一种强大的数据可视化工具,可以帮助我们直观地了解文本数据的关键词和主题。无论是从事数据分析、文本挖掘还是对话题进行可视化呈现,词云图都能提供有价值的信息。

​ 在创建词云图时,我们可以根据需求调整不同的参数,如背景颜色、词数限制和停用词等,以达到最佳效果。此外,我们还可以通过选择合适的字体、设置自定义形状和调整颜色、轮廓等来创建独特的词云图。

​ 希望本文对你理解词云图的基本原理和应用提供了帮助,并激发了你在数据可视化方面的创造力。无论是在学术研究、商业分析还是个人项目中,词云图都是一种强大而灵活的工具,能够使你的数据更具有吸引力和可解释性。

​ 开始探索词云图的奇妙世界吧!让我们用词云图来揭示文本背后的故事,展示文字的魅力,带领读者进入一个充满词语和想象力的视觉盛宴。无论是文字的力量还是数据的美感,词云图都能为我们带来全新的体验。让我们一起用词云图来发现和分享这个世界上的无限可能性!

这篇关于文本可视化之词云图的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/584134

相关文章

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

python 常见数学公式函数使用详解(最新推荐)

《python常见数学公式函数使用详解(最新推荐)》文章介绍了Python的数学计算工具,涵盖内置函数、math/cmath标准库及numpy/scipy/sympy第三方库,支持从基础算术到复杂数... 目录python 数学公式与函数大全1. 基本数学运算1.1 算术运算1.2 分数与小数2. 数学函数