【模拟IC学习笔记】Cascode OTA 设计

2024-01-08 15:52

本文主要是介绍【模拟IC学习笔记】Cascode OTA 设计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

辅助定理

增益=Gm*输出阻抗

输出短路求Gm

输入置0求输出阻抗

求源极负反馈的增益

G_{m}=\frac{I_{D}}{V_{in}}=\frac{g_{m}}{1+g_{m}R_{s}}

随着Vin的增加,Id也在增加,Rs上压降增加,所以,Vin的一部分电压体现在Rs上,而不是全部作为Vgs,因此导致Id变得平滑。

Rs足够大的时候,Gm=1/Rs,跨导Gm线性化,Gm的线性度是以牺牲增益为代价的。用增益换线性度。

R_{out}=R_{s}+r_{o}+g_{m}R_{s}r_{o}

源极负反馈的一个主要作用时增加共源极的输出阻抗,将Rs换成一个MOS管,就是我们常见的Cascode结构。总输出阻抗是上式并联RD。

当RD远远小于Rout时,增益≈RD/RS。当RD远远大于Rout时,增益≈gmro,为MOS管本征增益。相当于源极负反馈对输出电阻的增强刚好抵消其对跨导的衰减。

Cascode OTA 

DC分析

用辅助定理求增益。

AC分析

考虑电容,主极点在输出极点。CL越大,主极点越低,因此GBW越小,稳定性越好。次级点在X点。

问题:为什么Y点没有引入次级点,M1和M2构成信号通路,M3恒润M4构成负载通路,负载通路的极点对频率特性无影响吗?Cy可以无穷大?

求Gm

输出阻抗

考虑下半部分,首先忽略CL1,求出阻抗之后,再与CL1并联。

上述结果与CL1并联得到下图结果,p1b是主极点,p2b是次级点。

求OTA上半部分输出阻抗。

把上下两部分合并,阻抗合并后主极点也将合并,CL1和CL2合并。

增益

p1=zb,所以可以简化。Y点引入的零极点对近似相等,某种意义上可以抵消。

速度

饱和区,偏置电流一定的情况下,增益正比于WL,为了增大增益,需要增加MOS面积。

次级点表达式如下。

次级点p1越大,稳定性越好,为了增大次级点,所以需要减小M2的L。

噪声

M2不贡献噪声,所以只需要从增益和稳定性的角度去设计M2的尺寸。从噪声的角度考虑,R3的gm3要做小,gm1要做大。因为M3是负载管,M1是输入管。所以M3的宽长比要做小,M1的宽长比要做大。

综上所示,M1宽长比要大,gm要大(增益、噪声);M2的L要小,gm要大(带宽稳定性、输出阻抗);M4同M2;M3的宽长比要小,gm要小(噪声)。

距离较近的零极点对

具体公式推导可参考:Kamath B, Meyer R G, Gray P R. Relationship between frequency response and settling time of operational amplifiers[J]. IEEE Journal of Solid-State Circuits, 1974, 9(6): 347-352.

频域特性

设置低频增益为1e3,主极点为1e3,零极点对在20e3左右、零点是20e3,极点是k*20e3。k的大小显示了零极点对的相对位置,查看k从0.8变化到1.2时的频率响应。

%%pole-zero doublet frequency responseclear;clc;
p1 = 1e3;
A0 = 1e3;
w_doublet = 20e3;
figure(1);
hold on;
for k = 0.8:0.1:1.2z2 = w_doublet;p2 = w_doublet*k;num = A0.*[1/z2,1];den = conv([1/p1,1],[1/p2,1]);tf_sys = tf(num , den);bode(tf_sys)
end
legend( 'k = 0.8',...'k = 0.9',...'k = 1 ',...'k = 1.1',...'k = 1.2')
%%

结论:零极点对,对频域特性响应有限

时域特性

给阶跃信号,发现零极点对,对阶跃响应影响很大。这在采样电路设计中影响很大。

%%pole-zero doublet setting responseclear;clc;
p1=1e3;
A0 = 1e3;
w_doublet = 20e3;
k=1;
for k=0.8:0.1:1.2z2 = w_doublet;p2 = w_doublet*k ;num= A0.*[1/z2,1];den = conv([1/p1,1],[1/p2,1]);tf_sys = tf(num , den);tf_sys = tf_sys/(1+tf_sys)figure(1);hold on;t =0:1e-7:15e-5;step(tf_sys,t);
end
legend( 'k =0.8',...'k=0.9',...'k = 1',...'k = 1.1',...'k = 1.2')

这篇关于【模拟IC学习笔记】Cascode OTA 设计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/583986

相关文章

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

MyBatis设计SQL返回布尔值(Boolean)的常见方法

《MyBatis设计SQL返回布尔值(Boolean)的常见方法》这篇文章主要为大家详细介绍了MyBatis设计SQL返回布尔值(Boolean)的几种常见方法,文中的示例代码讲解详细,感兴趣的小伙伴... 目录方案一:使用COUNT查询存在性(推荐)方案二:条件表达式直接返回布尔方案三:存在性检查(EXI

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Python使用pynput模拟实现键盘自动输入工具

《Python使用pynput模拟实现键盘自动输入工具》在日常办公和软件开发中,我们经常需要处理大量重复的文本输入工作,所以本文就来和大家介绍一款使用Python的PyQt5库结合pynput键盘控制... 目录概述:当自动化遇上可视化功能全景图核心功能矩阵技术栈深度效果展示使用教程四步操作指南核心代码解析

Python模拟串口通信的示例详解

《Python模拟串口通信的示例详解》pySerial是Python中用于操作串口的第三方模块,它支持Windows、Linux、OSX、BSD等多个平台,下面我们就来看看Python如何使用pySe... 目录1.win 下载虚www.chinasem.cn拟串口2、确定串口号3、配置串口4、串口通信示例5

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示