vivado下ddr3的读写和测试详解

2024-01-08 13:18
文章标签 详解 测试 读写 vivado ddr3

本文主要是介绍vivado下ddr3的读写和测试详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近博主在根据例程做ddr3的读写测试,发现根本看不到好吧,虽然之前博主做过SDRAM的读写测试,但是ddr3更加复杂,时序写起来很吃力,所以需要用到vivado下自带的ip核。具体来看下面例化过程:

1.在ip核下搜索mig 双击打开

2.直接next  然后在当前界面修改你的ddr3ip核的名字

这里博主是因为已经例化了ip核,所以名字不能修改,然后next

3.这是要不要兼容芯片,不选,点击next

4.勾选你的存储器类型,我的是ddr3,点击next

5.

这个配置比较多,第一个时钟为ddr3实际工作的时钟,然后选择你的内存型号,数据宽度即可,点击next

6.

然后输入时钟可能需要pll倍频得到,一般是200Mhz,这里注意看下最后一行的用户地址类型,它是由bank+row+column组成的,这个在后面的读写测试会进一步提到。

7.

时钟选择不差分,然后参考时钟为用户时钟。

8.下面就是默认next,然后就是分配管脚了,这个你买的开发板一般都会提高ucf文件,直接复制就行。

然后next,生成。

以上就是ip核的简单例化过程,这个步骤网上有很多类似的,博主就不一一讲解了,把精力放在读写测试这块。

首先来看老三样:ip核用户界面下的控制命令,读和写

这是控制命令,可以让用户来发送读或者写命令,需要注意的事只有当app_rdy和app_en同为高时才有效,命令被发出。这里博主通过ila上电分析发现app_rdy为ip核自己产生的输出信号,但是它并不是一直都是高电平,所以在后续的读写测试时需要判断,至于怎么判断,我们后面代加上电分析。

上面是写命令,可以看到当add_wdf_wren和add_wdf_end同为高时数据才能有效被写进去,同时app_wdf_rdy也要为高。需要注意的一点是,写数据和写命令此时不再有关系,为什么,因为写数据其实是通过fifo缓存,当写命令有效时,由于先进先出的特性会把它所对应数据给写入,当然这个很拗口,下面会给出示例

上面的是读过程,可以看出当读命令发出后需要一个延迟读数据才会有效。

下面来看代码进行讲解:

module mem_burst
#(parameter MEM_DATA_BITS = 64,parameter ADDR_BITS = 24
)
(input rst,                                 /*复位*/input mem_clk,                               /*接口时钟*/input rd_burst_req,                          /*读请求*/input wr_burst_req,                          /*写请求*/input[9:0] rd_burst_len,                     /*读数据长度*/input[9:0] wr_burst_len,                     /*写数据长度*/input[ADDR_BITS - 1:0] rd_burst_addr,        /*读首地址*/input[ADDR_BITS - 1:0] wr_burst_addr,        /*写首地址*/output rd_burst_data_valid,                  /*读出数据有效*/output wr_burst_data_req,                    /*写数据信号*/output[MEM_DATA_BITS - 1:0] rd_burst_data,   /*读出的数据*/input[MEM_DATA_BITS - 1:0] wr_burst_data,    /*写入的数据*/output rd_burst_finish,                      /*读完成*/output wr_burst_finish,                      /*写完成*/output burst_finish,                         /*读或写完成*////output[ADDR_BITS-1:0]                       app_addr,output[2:0]                                 app_cmd,output                                      app_en,output [MEM_DATA_BITS-1:0]                  app_wdf_data,output                                      app_wdf_end,output [MEM_DATA_BITS/8-1:0]                app_wdf_mask,output                                      app_wdf_wren,input [MEM_DATA_BITS-1:0]                   app_rd_data,input                                       app_rd_data_end,input                                       app_rd_data_valid,input                                       app_rdy,input                                       app_wdf_rdy,input                                       ui_clk_sync_rst,  input                                       init_calib_complete
);assign app_wdf_mask = {MEM_DATA_BITS/8{1'b0}};localparam IDLE = 3'd0;
localparam MEM_READ = 3'd1;
localparam MEM_READ_WAIT = 3'd2;
localparam MEM_WRITE  = 3'd3;
localparam MEM_WRITE_WAIT = 3'd4;
localparam READ_END = 3'd5;
localparam WRITE_END = 3'd6;
localparam MEM_WRITE_FIRST_READ = 3'd7;/*parameter IDLE = 3'd0;
parameter MEM_READ = 3'd1;
parameter MEM_READ_WAIT = 3'd2;
parameter MEM_WRITE  = 3'd3;
parameter MEM_WRITE_WAIT = 3'd4;
parameter READ_END = 3'd5;
parameter WRITE_END = 3'd6;
parameter MEM_WRITE_FIRST_READ = 3'd7;*/
reg[2:0] state;	
reg[9:0] rd_addr_cnt;
reg[9:0] rd_data_cnt;
reg[9:0] wr_addr_cnt;
reg[9:0] wr_data_cnt;reg[2:0] app_cmd_r;
reg[ADDR_BITS-1:0] app_addr_r;
reg app_en_r;
reg app_wdf_end_r;
reg app_wdf_wren_r;
assign app_cmd = app_cmd_r;
assign app_addr = app_addr_r;
assign app_en = app_en_r;
assign app_wdf_end = app_wdf_end_r;
assign app_wdf_data = wr_burst_data;
assign app_wdf_wren = app_wdf_wren_r & app_wdf_rdy;
assign rd_burst_finish = (state == READ_END);
assign wr_burst_finish = (state == WRITE_END);
assign burst_finish = rd_burst_finish | wr_burst_finish;assign rd_burst_data = app_rd_data;
assign rd_burst_data_valid = app_rd_data_valid;assign wr_burst_data_req = (state == MEM_WRITE) & app_wdf_rdy ;always@(posedge mem_clk or posedge rst)
beginif(rst)beginapp_wdf_wren_r <= 1'b0;endelse if(app_wdf_rdy)app_wdf_wren_r <= wr_burst_data_req;
endalways@(posedge mem_clk or posedge rst)
beginif(rst)beginstate <= IDLE;app_cmd_r <= 3'b000;app_addr_r <= 0;app_en_r <= 1'b0;rd_addr_cnt <= 0;rd_data_cnt <= 0;wr_addr_cnt <= 0;wr_data_cnt <= 0;app_wdf_end_r <= 1'b0;endelse if(init_calib_complete ===  1'b1)begincase(state)IDLE:beginif(rd_burst_req)beginstate <= MEM_READ;app_cmd_r <= 3'b001;app_addr_r <= {rd_burst_addr,3'd0};app_en_r <= 1'b1;endelse if(wr_burst_req)beginstate <= MEM_WRITE;app_cmd_r <= 3'b000;app_addr_r <= {wr_burst_addr,3'd0};app_en_r <= 1'b1;wr_addr_cnt <= 0;app_wdf_end_r <= 1'b1;wr_data_cnt <= 0;endendMEM_READ:beginif(app_rdy)beginapp_addr_r <= app_addr_r + 8;if(rd_addr_cnt == rd_burst_len - 1)beginstate <= MEM_READ_WAIT;rd_addr_cnt <= 0;app_en_r <= 1'b0;endelserd_addr_cnt <= rd_addr_cnt + 1;endif(app_rd_data_valid)begin//app_addr_r <= app_addr_r + 8;if(rd_data_cnt == rd_burst_len - 1)beginrd_data_cnt <= 0;state <= READ_END;endelsebeginrd_data_cnt <= rd_data_cnt + 1;endendendMEM_READ_WAIT:beginif(app_rd_data_valid)beginif(rd_data_cnt == rd_burst_len - 1)beginrd_data_cnt <= 0;state <= READ_END;endelsebeginrd_data_cnt <= rd_data_cnt + 1;endendendMEM_WRITE_FIRST_READ:beginapp_en_r <= 1'b1;state <= MEM_WRITE;wr_addr_cnt <= 0;endMEM_WRITE:beginif(app_rdy)beginapp_addr_r <= app_addr_r + 8;if(wr_addr_cnt == wr_burst_len - 1)beginapp_wdf_end_r <= 1'b0;app_en_r <= 1'b0;endelsebeginwr_addr_cnt <= wr_addr_cnt + 1;endendif(wr_burst_data_req)begin//app_addr_r <= app_addr_r + 8;if(wr_data_cnt == wr_burst_len - 1)begin	state <= MEM_WRITE_WAIT;endelsebeginwr_data_cnt <= wr_data_cnt + 1;endendendREAD_END:state <= IDLE;MEM_WRITE_WAIT:beginif(app_rdy)beginapp_addr_r <= app_addr_r + 'b1000;if(wr_addr_cnt == wr_burst_len - 1)beginapp_wdf_end_r <= 1'b0;app_en_r <= 1'b0;if(app_wdf_rdy) state <= WRITE_END;endelsebeginwr_addr_cnt <= wr_addr_cnt + 1;endendelse if(~app_en_r & app_wdf_rdy)state <= WRITE_END;endWRITE_END:state <= IDLE;default:state <= IDLE;endcaseend
end
endmodule

这个是黑金给的例程,一开始没看懂,搞了好几天才看懂整个细节,下面来讲解一下:首先state在IDLE状态,当wr_burst_req有效时进入MEM_WRITE状态,这时候有两个条件判断,第一个if(app_rdy)为真,说明写命令是有效的,那么随之伴随的是地址的累加,同时也会计数,如果写命令发送了128次,就结束。第二个if(wr_burst_data_req)为真,注意wr_burst_data_req为真实际就是app_wdf_rdy为真,所以写的数据是被缓存到了fifo并且当读命令有效时会依次传入,这里大家会问,为啥不让app_rdy和app_wdf_rdy同时为真才地址增加和写数据呀,这是因为app_rdy和app_wdf_rdy并不是一直都为高电平,下面是上电结果;

看到没,rdy为低时,app_wdf_rdy为高,这说明数据此时相对于地址来说多写进去一次,那么多的那个数据就被缓存了,等到下一个rdy为高就会去写入之前那个缓存的数据而不是当前时刻的数据。这也就是为什么每个条件判断语句都会去计数,一个计的是多少个写命令被发出,另一个是多少个写的数据被发送。

下面来看下读过程,首先state在IDLE状态,当rd_burst_req有效时进入MEM_READ状态,这里同样有两个if判断,第一个if(app_rdy)是用来判断读命令是否有效并且地址累加,第二个if(app_rd_data_valid)是读数据有效,根据上面的读流程,读数据有效并不会随着读命令有效就马上出现,一般会延迟多个周期,所以同样需要分开判断并且计数。来看时序:

看到没,当读请求有效时,下一个时钟周期地址就开始计数并且累计了,但是app_rd_data_valid还需延迟一会才能有效。

其实把读写原理搞懂后就很简单,博主一开始卡住的地方就是写的那块,以为写数据需要app_rdy和app_wdf_rdy同时有效才能成功写入,没有搞懂命令和数据的关系,因为ip核的写数据是先缓存在fifo中的,所以即使当前写命令无效时,写数据依旧可以成功写入。感觉是不是和SDRAM不一样啊,可能没用ip核和用了还是有区别的吧。。。

感觉ddr3的时序重要的还是这两点,其他的至于如何精确地址和数据对应,可以具体分析,会发现程序写的还是很严谨的啊。。。

这篇关于vivado下ddr3的读写和测试详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/583573

相关文章

Java Lambda表达式的使用详解

《JavaLambda表达式的使用详解》:本文主要介绍JavaLambda表达式的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言二、Lambda表达式概述1. 什么是Lambda表达式?三、Lambda表达式的语法规则1. 无参数的Lambda表

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Spring @RequestMapping 注解及使用技巧详解

《Spring@RequestMapping注解及使用技巧详解》@RequestMapping是SpringMVC中定义请求映射规则的核心注解,用于将HTTP请求映射到Controller处理方法... 目录一、核心作用二、关键参数说明三、快捷组合注解四、动态路径参数(@PathVariable)五、匹配请

git stash命令基本用法详解

《gitstash命令基本用法详解》gitstash是Git中一个非常有用的命令,它可以临时保存当前工作区的修改,让你可以切换到其他分支或者处理其他任务,而不需要提交这些还未完成的修改,这篇文章主要... 目录一、基本用法1. 保存当前修改(包括暂存区和工作区的内容)2. 查看保存了哪些 stash3. 恢

java String.join()方法实例详解

《javaString.join()方法实例详解》String.join()是Java提供的一个实用方法,用于将多个字符串按照指定的分隔符连接成一个字符串,这一方法是Java8中引入的,极大地简化了... 目录bVARxMJava String.join() 方法详解1. 方法定义2. 基本用法2.1 拼接

Java中的record使用详解

《Java中的record使用详解》record是Java14引入的一种新语法(在Java16中成为正式功能),用于定义不可变的数据类,这篇文章给大家介绍Java中的record相关知识,感兴趣的朋友... 目录1. 什么是 record?2. 基本语法3. record 的核心特性4. 使用场景5. 自定

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

Python struct.unpack() 用法及常见错误详解

《Pythonstruct.unpack()用法及常见错误详解》struct.unpack()是Python中用于将二进制数据(字节序列)解析为Python数据类型的函数,通常与struct.pa... 目录一、函数语法二、格式字符串详解三、使用示例示例 1:解析整数和浮点数示例 2:解析字符串示例 3:解

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

MySQL 表的内外连接案例详解

《MySQL表的内外连接案例详解》本文给大家介绍MySQL表的内外连接,结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录表的内外连接(重点)内连接外连接表的内外连接(重点)内连接内连接实际上就是利用where子句对两种表形成的笛卡儿积进行筛选,我