leetcode47,leetcode491,leetcode40,leetcode90,系列问题包你懂!!!Trie树对于排列问题、组合等结果集去重的应用

本文主要是介绍leetcode47,leetcode491,leetcode40,leetcode90,系列问题包你懂!!!Trie树对于排列问题、组合等结果集去重的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

leetcode47. 全排列 II,leetcode491. 非递减子序列,leetcode40. 组合总和 II,leetcode90. 子集 II

题目

不过多赘述

思路

实际上这几题是相同的,都是求一个结果集合,然后集合中的元素不能重复。并且每一个元素都满足一定要求。
那么实际上,我们想一想,trie树就是一种很好的具有去重功能的数据结构,那么这些问题就都可以归结为建立一个trie树,然后从头读到叶子节点,然后对于具体问题就是看他的要求了,比如排列问题相当于没要求,非递减子序列则是要求trie树dfs过程元素一致单调不减,求和就是累计递归过程中节点的值与target值对比,子集则是递归过程中每读一个新节点我就存一次结果。
这么一看是不是通透了,那么我们举一个例子,这个例子是leetcode491. 非递减子序列,也是我思考出这一思路的题,下面将是我逐步优化代码的过程。注意第三版trie树的set还可以用map,这样甚至能记录一些其他属性比如每个节点上出现该数字的次数。

题解

// 第一版,这时候我是建立一个trie树,然后再遍历的
class Solution {// 这题用trie树解决,其实init时候可以边建立树边记录数据,不用再dfs,可以优化一下List<List<Integer>> list = new ArrayList<>();List<Integer> subList = new ArrayList<>();int len = 0;public List<List<Integer>> findSubsequences(int[] nums) {Node dummy = new Node();// 别忘了初始化默认是0dummy.val = -101;dummy.subNode = new ArrayList<>();trieInit(dummy, nums, 0);dfs(dummy);return list;}public void dfs(Node root) {if (root == null) {return;}for(int i=0;i<root.subNode.size();i++) {subList.add(root.subNode.get(i).val);len++;if (len > 1) {list.add(new ArrayList<>(subList));}dfs(root.subNode.get(i));len--;subList.remove(subList.size() - 1);}}public void trieInit(Node root, int[] nums, int idx) {if (idx == nums.length) {return;}for(int i=idx;i<nums.length;i++) {if (!root.subNode.isEmpty() && root.subNode.get(root.subNode.size() - 1).val == nums[i]) {continue;}if (root.val > nums[i]) {continue;}boolean flag = false;for (int j=0;j<root.subNode.size();j++) {if (root.subNode.get(j).val == nums[i]) {trieInit(root.subNode.get(j), nums, i + 1);flag = true;break;}}if (flag) {continue;}Node node = new Node();node.val = nums[i];node.subNode = new ArrayList<>();root.subNode.add(node);/*subList.add(nums[i]);len++;if (len > 1) {list.add(new ArrayList<>(subList));}*/trieInit(node, nums, i + 1);/*len--;subList.remove(subList.size() - 1);*/}}
}class Node {List<Node> subNode;int val;
}
// 第二版,我将建立树和遍历树合为一起,一边建立一边读
class Solution {// 这题用trie树解决,其实init时候可以边建立树边记录数据,不用再dfs,可以优化一下List<List<Integer>> list = new ArrayList<>();List<Integer> subList = new ArrayList<>();int len = 0;public List<List<Integer>> findSubsequences(int[] nums) {Node dummy = new Node();// 别忘了初始化默认是0dummy.val = -101;dummy.subNode = new ArrayList<>();trieInit(dummy, nums, 0);return list;}public void trieInit(Node root, int[] nums, int idx) {//if (idx == nums.length) {return;}for(int i=idx;i<nums.length;i++) {if (!root.subNode.isEmpty() && root.subNode.get(root.subNode.size() - 1).val == nums[i]) {continue;}if (root.val > nums[i]) {continue;}boolean flag = false;for (int j=0;j<root.subNode.size();j++) {if (root.subNode.get(j).val == nums[i]) {trieInit(root.subNode.get(j), nums, i + 1);flag = true;break;}}if (flag) {continue;}Node node = new Node();node.val = nums[i];node.subNode = new ArrayList<>();root.subNode.add(node);subList.add(nums[i]);len++;if (len > 1) {list.add(new ArrayList<>(subList));}trieInit(node, nums, i + 1);len--;subList.remove(subList.size() - 1);}}
}class Node {List<Node> subNode;int val;
}
// 第三版,我意识到不需要Node类来具体对应树的数据结构,可以在每个节点进到trieInit函数时候建立一个set,这样set就是记录trie树当前节点下的所有可能子节点了,并且是自带去重的,还不用for遍历子节点了
class Solution {// 这题用trie树解决,其实init时候可以边建立树边记录数据,不用再dfs,可以优化一下List<List<Integer>> list = new ArrayList<>();List<Integer> subList = new ArrayList<>();public List<List<Integer>> findSubsequences(int[] nums) {trieInit(nums, 0);return list;}public void trieInit(int[] nums, int idx) {// 子节点中的数字都有哪些Set<Integer> set = new HashSet<>();for(int i=idx;i<nums.length;i++) {if (!subList.isEmpty() && subList.get(subList.size() - 1) > nums[i]) {continue;}if (set.contains(nums[i])) {continue;}subList.add(nums[i]);set.add(nums[i]);if (subList.size() > 1) {list.add(new ArrayList<>(subList));}trieInit(nums, i + 1);subList.remove(subList.size() - 1);}}
}

这篇关于leetcode47,leetcode491,leetcode40,leetcode90,系列问题包你懂!!!Trie树对于排列问题、组合等结果集去重的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/582335

相关文章

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

maven异常Invalid bound statement(not found)的问题解决

《maven异常Invalidboundstatement(notfound)的问题解决》本文详细介绍了Maven项目中常见的Invalidboundstatement异常及其解决方案,文中通过... 目录Maven异常:Invalid bound statement (not found) 详解问题描述可

idea粘贴空格时显示NBSP的问题及解决方案

《idea粘贴空格时显示NBSP的问题及解决方案》在IDEA中粘贴代码时出现大量空格占位符NBSP,可以通过取消勾选AdvancedSettings中的相应选项来解决... 目录1、背景介绍2、解决办法3、处理完成总结1、背景介绍python在idehttp://www.chinasem.cna粘贴代码,出

SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)

《SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)》本文总结了SpringBoot项目整合Kafka启动失败的常见错误,包括Kafka服务器连接问题、序列化配置错误、依赖配置问题、... 目录一、Kafka服务器连接问题1. Kafka服务器无法连接2. 开发环境与生产环境网络不通二、序

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

nacos服务无法注册到nacos服务中心问题及解决

《nacos服务无法注册到nacos服务中心问题及解决》本文详细描述了在Linux服务器上使用Tomcat启动Java程序时,服务无法注册到Nacos的排查过程,通过一系列排查步骤,发现问题出在Tom... 目录简介依赖异常情况排查断点调试原因解决NacosRegisterOnWar结果总结简介1、程序在

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng

解决java.util.RandomAccessSubList cannot be cast to java.util.ArrayList错误的问题

《解决java.util.RandomAccessSubListcannotbecasttojava.util.ArrayList错误的问题》当你尝试将RandomAccessSubList... 目录Java.util.RandomAccessSubList cannot be cast to java.

Apache服务器IP自动跳转域名的问题及解决方案

《Apache服务器IP自动跳转域名的问题及解决方案》本教程将详细介绍如何通过Apache虚拟主机配置实现这一功能,并解决常见问题,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录​​问题背景​​解决方案​​方法 1:修改 httpd-vhosts.conf(推荐)​​步骤

java反序列化serialVersionUID不一致问题及解决

《java反序列化serialVersionUID不一致问题及解决》文章主要讨论了在Java中序列化和反序列化过程中遇到的问题,特别是当实体类的`serialVersionUID`发生变化或未设置时,... 目录前言一、序列化、反序列化二、解决方法总结前言serialVersionUID变化后,反序列化失