自然语言处理5——发掘隐藏规律 - Python中的关联规则挖掘

2024-01-08 01:52

本文主要是介绍自然语言处理5——发掘隐藏规律 - Python中的关联规则挖掘,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 写在开头
  • 1. 了解关联规则挖掘的概念和实际应用
    • 1.1 关联规则挖掘在市场分析和购物篮分析中的应用
    • 1.2 关联规则的定义和基本原理
    • 1.3 应用场景
  • 2. 使用Apriori算法和FP-growth算法进行关联规则挖掘
    • 2.1 Apriori算法的工作原理和实现步骤
    • 2.2 FP-growth算法的优势和使用方法
    • 2.3 Apriori算法 vs FP-growth算法
  • 3. 结果解读和关联规则可视化
    • 3.1 如何解读挖掘出的关联规则
    • 3.2 利用可视化工具展示关联规则的分布
  • 写在最后

写在开头

在当今大数据时代,数据分析和挖掘技术成为解决实际问题和优化业务流程的重要工具。其中,关联规则挖掘作为一种强大的数据挖掘技术,在市场分析和购物篮分析中发挥着重要作用。本文将带领你深入了解关联规则挖掘的概念、实际应用,以及如何使用Python中的Apriori算法和FP-growth算法进行关联规则挖掘。最后,我们将探讨如何解读挖掘结果并通过可视化工具展示关联规则的分布。

1. 了解关联规则挖掘的概念和实际应用

1.1 关联规则挖掘在市场分析和购物篮分析中的应用

在市场分析中,关联规则挖掘是一种强大的工具,特别是在购物篮分析方面。通过分析顾客购物篮中的商品组合,企业可以发现不同商品之间的关联性,从而制定更精准的市场策略。例如,超市可能发现了牛奶和面包之间的强关联关系,于是将它们摆放在相邻货架上,提高了购买这两种商品的可能性,增加了销售额。

1.2 关联规则的定义和基本原理

定义: 关联规则是指在数据集中不同项之间存在的相关性或联合出现的模式。这些规则通常采用“X ⇒ Y”的形式,其中X和Y是数据集中的项,意味着当X出现时,可能会伴随着Y的出现。

基本原理: 关联规则挖掘的过程始于寻找频繁项集。频繁项集是在数据集中频繁出现的项的组合。常用的方法包括扫描数据集以计算每个项集的支持度(Support)。支持度表示项集出现的频率,高支持度的项集即为频繁项集。

生成关联规则: 基于频繁项集,可以计算置信度(Confidence)来生成关联规则。置信度是规则的可信度,例如,如果A出现,则B也出现的概率。高置信度的规则更可靠,通常作为有用的关联规则进行筛选。

购物篮分析的实现,是基于条件概率,也就是贝叶斯公式。在实际应用时,主要会牵扯到3个指标:置信度支持度提升度
将信息展示如下,N代表数量:

指标名称指标说明计算公式举例
产品A的订单数有购买过产品A的订单数量N(A)400
产品B的订单数有购买过产品B的订单数量N(B)300
同时购买产品A和B的订单数同时购买过产品A和B的订单数量N(A∩B)200
总订单数所有订单数量N(I)1000
支持度支持的程度,一般用百分比表示。本例中,A和B的支持度,即A和B同时出现的频率,如果A和B一起出现的频率非常小,那么就说明了A和B之间的联系并不大A和B的支持度=N(A∩B)/ N(I)200/1000=20%
置信度揭示了A出现时,B是否一定会出现,如果出现则其大概有多大的可能出现P(B|A)=P(A∩B) /P(A)=[N(A∩B)/N(I)]/[N(A)/N(I)]=N(A∩B)/N(A)200/400=50%
提升度提升度反映了关联规则中的A与B的相关性,提升度>1且越高表明正相关性越高,提升度<1且越低表明负相关性越高,提升度=1表明没有相关性,即相互独立。P(A→B)=P(B|A)/P(B) =[N(A∩B)/N(I)]/[N(A)/N(I)]/[N(B)/N(I)]=N(A∩B)*N(I)/N(A)/N(B)法1:0.5/(300/1000)=0.5/0.3≈1.67 法2:150*1000/400/300≈1.67

1.3 应用场景

市场分析和购物篮分析

在零售业中,关联规则被广泛用于购物篮分析。超市利用这些规则发现消费者购买商品之间的关联关系,从而优化产品摆放、促销策略和交叉销售。例如,发现经常一起购买的商品,如牛奶和谷物,超市可以将它们放在相邻货架上,提高销售量。

医疗保健

在医疗领域,关联规则用于分析疾病和治疗方法之间的关系。医疗专家可以利用关联规则来发现特定病症与药物的关联性,指导临床决策,并提供更个性化的治疗方案。

网络安全

在网络安全中,关联规则挖掘可用于检测异常行为或入侵。通过分析网络流量数据,系统可以发现不同事件之间的关联模式,识别潜在的威胁或攻击,从而及时采取防御措施。

2. 使用Apriori算法和FP-growth算法进行关联规则挖掘

2.1 Apriori算法的工作原理和实现步骤

Apriori算法是一种经典的关联规则挖掘算法,它基于“先验原理”,即如果一个项集是频繁的,那么它的所有子集也是频繁的。这一原理减少了搜索空间,提高了算法效率。实现Apriori算法的步骤包括扫描数据集、生成候选项集、计算支持度、筛选频繁项集等。之前我在文章里有过详细的介绍,如果感兴趣,欢迎访问Python实现产品关联性分析apriori算法 ,此处仅作简单展示:

import pandas as pd
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori, association_rules# 构建超市购物篮数据
data = [['面包', '牛奶', '啤酒'],['面包', '牛奶', '尿布', '蛋糕'],['牛奶', '尿布', '啤酒', '可乐'],['面包', '牛奶', '尿布', '啤酒'],['面包', '牛奶', 

这篇关于自然语言处理5——发掘隐藏规律 - Python中的关联规则挖掘的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/581960

相关文章

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal