强化学习的数学原理学习笔记 - 蒙特卡洛方法(Monte Carlo)

2024-01-07 20:12

本文主要是介绍强化学习的数学原理学习笔记 - 蒙特卡洛方法(Monte Carlo),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 概览:RL方法分类
  • 蒙特卡洛方法(Monte Carlo,MC)
    • MC Basic
    • MC Exploring Starts
    • 🟦MC ε-Greedy


本系列文章介绍强化学习基础知识与经典算法原理,大部分内容来自西湖大学赵世钰老师的强化学习的数学原理课程(参考资料1),并参考了部分参考资料2、3的内容进行补充。

系列博文索引:(更新中)

  • 强化学习的数学原理学习笔记 - RL基础知识
  • 强化学习的数学原理学习笔记 - 基于模型(Model-based)
  • 强化学习的数学原理学习笔记 - 蒙特卡洛方法(Monte Carlo)
  • 强化学习的数学原理学习笔记 - 时序差分学习(Temporal Difference)

参考资料:

  1. 【强化学习的数学原理】课程:从零开始到透彻理解(完结)(主要)
  2. Sutton & Barto Book: Reinforcement Learning: An Introduction
  3. 机器学习笔记

*注:【】内文字为个人想法,不一定准确

概览:RL方法分类

图源:https://zhuanlan.zhihu.com/p/36494307
*图源:https://zhuanlan.zhihu.com/p/36494307

蒙特卡洛方法(Monte Carlo,MC)

求解RL问题,要么需要模型,要么需要数据。之前介绍了基于模型(model-based)的方法。然而在实际场景中,环境的模型(如状态转移函数)往往是未知的,这就需要用无模型(model-free)方法解决问题。

无模型的方法可以分为两大类:蒙特卡洛方法(Monte Carlo,MC)和时序差分学习(Temporal Difference,TD)。本文介绍蒙特卡洛方法。

蒙特卡洛思想:通过大数据量的样本采样来进行估计【本质上是大数定律的应用(基于独立同分布采样)】,将策略迭代中依赖于model的部分替换为model-free。

MC的核心idea:并非直接求解 q π ( s , a ) q_{\pi} (s, a) qπ(s,a)的准确值,而是基于数据(sample / experience)来估计 q π ( s , a ) q_{\pi} (s, a) qπ(s,a)的值。MC直接通过动作值的定义进行均值估计,即:
q π ( s , a ) = E π [ G t ∣ S t = s , A t = a ] ≈ 1 N ∑ i = 1 N g ( i ) ( s , a ) q_{\pi}(s, a) = \mathbb{E}_\pi [ G_t | S_t = s, A_t = a ] \approx \frac{1}{N} \sum^N_{i=1} g^{(i)} (s, a) qπ(s,a)=Eπ[GtSt=s,At=a]N1i=1Ng(i)(s,a)
其中 g ( i ) ( s , a ) g^{(i)} (s, a) g(i)(s,a)表示对于 G t G_t Gt的第 i i i个采样。

MC Basic

算法步骤:在第 k k k次迭代中,给定策略 π k \pi_k πk(随机初始策略: π 0 \pi_0 π0

  • 策略评估:对每个状态-动作对 ( s , a ) (s, a) (s,a),运行无穷(或足够多)次episode,估算 q π k ( s , a ) q_{\pi_{k}} (s, a) qπk(s,a)
  • 策略提升:基于估算的 q π k ( s , a ) q_{\pi_{k}} (s, a) qπk(s,a),求解迭代策略 π k + 1 ( s ) = arg max ⁡ π ∑ a π ( a ∣ s ) q π k ( s , a ) \pi_{k+1}(s) = \argmax_\pi \sum_a \pi(a|s) q_{\pi_{k}}(s, a) πk+1(s)=argmaxπaπ(as)qπk(s,a)

MC Basic与策略迭代的区别:在第 k k k次迭代中

  • 策略迭代使用迭代方法求出状态值 v π k v_{\pi_k} vπk,并基于状态值求出动作值 q π k ( s , a ) q_{\pi_k} (s, a) qπk(s,a)
  • MC Basic直接基于采样/经验均值估计 q π k ( s , a ) q_{\pi_k} (s, a) qπk(s,a)(不需要估计状态值)

*MC Basic只是用来说明MC的核心idea,并不会在实际中应用,因为其非常低效。

MC Exploring Starts

思想:提升MC Basic的效率

  • 利用数据:对于一个轨迹,从后往前利用 ( s , a ) (s, a) (s,a)状态-动作对采样做估计
    • 例如:对于轨迹 s 1 → a 2 s 2 → a 4 s 1 → a 2 s 2 → a 3 s 5 → a 1 ⋯ s_1 \xrightarrow{a_2} s_2 \xrightarrow{a_4} s_1 \xrightarrow{a_2} s_2 \xrightarrow{a_3} s_5 \xrightarrow{a_1} \cdots s1a2 s2a4 s1a2 s2a3 s5a1 ,从后往前采样,即先估计 q π ( s 5 , a 1 ) q_\pi(s_5, a_1) qπ(s5,a1),再估计 q π ( s 2 , a 3 ) = R t + 4 + γ q π ( s 5 , a 1 ) q_\pi(s_2, a_3) = R_{t+4} + \gamma q_\pi(s_5, a_1) qπ(s2,a3)=Rt+4+γqπ(s5,a1),进而估计 q π ( s 1 , a 2 ) = R t + 3 + γ q π ( s 2 , a 3 ) q_\pi(s_1, a_2) = R_{t+3} + \gamma q_\pi(s_2, a_3) qπ(s1,a2)=Rt+3+γqπ(s2,a3),以此类推
  • 更新策略:不必等待所有episode的数据收集完毕,直接基于单个episode进行估计,类似于截断策略迭代(单次估计不准确,但快)
    • 这是通用策略迭代(Generalized Policy Iteration,GPI)的思想

MC Exploring Starts

  • Exploring:探索每个 ( s , a ) (s, a) (s,a)状态-动作对
  • Starts:从每个状态-动作对开始一个episode
    • 与Visit对应:从其他的状态-动作对开始一个episode,但其轨迹能经过当前的状态-动作对

🟦MC ε-Greedy

Exploring Starts在实际中难以实现,考虑引入soft policy:随机(stochastic)选择动作

ε-Greedy策略
π ( a ∣ s ) = { 1 − ε ∣ A ( s ) ∣ ( ∣ A ( s ) ∣ − 1 ) , for the greedy action,  ε ∣ A ( s ) ∣ , for other  ∣ A ( s ) ∣ − 1 actions. \pi(a|s) = \begin{cases} 1-\frac{\varepsilon}{|\mathcal{A}(s)|} (|\mathcal{A}(s)|-1), &\text{for the greedy action, } \\ \frac{\varepsilon}{|\mathcal{A}(s)|}, &\text{for other } |\mathcal{A}(s)|-1 \text{ actions.} \end{cases} π(as)={1A(s)ε(A(s)1),A(s)ε,for the greedy action, for other A(s)1 actions.
其中, ε ∈ [ 0 , 1 ] \varepsilon \in [0,1] ε[0,1] ∣ A ( s ) ∣ |\mathcal{A}(s)| A(s)表示状态 s s s下的动作数量。

  • 直观理解:以较高概率选择贪心动作(greedy action),以较低均等概率选择其他动作
  • 特性:选择贪心动作的概率永远不低于选择其他动作的概率
  • 目的:平衡exploitation(探索)和exploration(利用)
    • ε = 0 \varepsilon = 0 ε=0:侧重于利用,永远选择贪心动作
    • ε = 1 \varepsilon = 1 ε=1:侧重于探索,以均等概率选择所有动作(均匀分布)

MC ε-Greedy:在策略提升阶段,求解下式
π k + 1 ( s ) = arg max ⁡ π ∈ Π ε ∑ a π ( a ∣ s ) q π k ( s , a ) \pi_{k+1}(s) = \argmax_{\color{red}\pi \in \Pi_\varepsilon} \sum_a \pi(a|s) q_{\pi_{k}}(s, a) πk+1(s)=πΠεargmaxaπ(as)qπk(s,a)

其中, π ∈ Π ε \pi \in \Pi_\varepsilon πΠε表示所有ε-Greedy策略的集合。得到的最优策略为:
π k + 1 ( a ∣ s ) = { 1 − ε ∣ A ( s ) ∣ ( ∣ A ( s ) ∣ − 1 ) , a = a k ∗ , ε ∣ A ( s ) ∣ , a ≠ a k ∗ . \pi_{k+1}(a|s) = \begin{cases} 1-\frac{\varepsilon}{|\mathcal{A}(s)|} (|\mathcal{A}(s)|-1), &a = a_k^*, \\ \frac{\varepsilon}{|\mathcal{A}(s)|}, &a \neq a_k^*. \end{cases} πk+1(as)={1A(s)ε(A(s)1),A(s)ε,a=ak,a=ak.

MC ε-Greedy与MC Basic和MC Exploring Starts的区别:

  • 后二者求解的范围是 π ∈ Π \pi \in \Pi πΠ,即所有策略的集合
  • 后二者得到的是确定性策略,前者得到的是随机策略

MC ε-Greedy与MC Exploring Starts的唯一区别在于ε-Greedy策略,因此MC ε-Greedy不需要Exploring Starts。

MC ε-Greedy通过探索性牺牲了最优性,但可以通过设置一个较小的ε(如0.1)进行平衡

  • 在实际中,可以为ε设置一个较大的初始值,随着迭代轮数逐渐减小其取值
  • ε的值越大,最终策略的最优性越差

最终训练得到的策略,可以去掉ε,直接使用greedy的确定性策略(consistent)。

这篇关于强化学习的数学原理学习笔记 - 蒙特卡洛方法(Monte Carlo)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/581115

相关文章

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6

Java中实现线程的创建和启动的方法

《Java中实现线程的创建和启动的方法》在Java中,实现线程的创建和启动是两个不同但紧密相关的概念,理解为什么要启动线程(调用start()方法)而非直接调用run()方法,是掌握多线程编程的关键,... 目录1. 线程的生命周期2. start() vs run() 的本质区别3. 为什么必须通过 st