Plotly学习记录 1

2024-01-07 15:50
文章标签 学习 记录 plotly

本文主要是介绍Plotly学习记录 1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0. 古木阴中系短篷

    一个星期加班加点的,下篇论文的准备工作基本做好了。但是错过了七月份的一个会议,八月的会是没有检索的,自然没有投的必要了。所以写论文的工作暂时放一下。

    最近入手了一本4月出版的《Python数据分析:基于Plotly的动态可视化绘图》。在深度学习论文中实在需要大量好看的图表了,可视化展示可以说是论文第一眼看上去,能不能出彩的重中之重了。客观来讲,如果总是先导出jason格式或者CSV数据再用第三方工具如Matlab来绘制可能会有些麻烦(虽然这是我最熟悉也最常用的方法,图表样式等等都是后期靠自己的论文审美绘制);而常用的Python绘图库Matplotlib还是有一些不方便,后续会结合书上的讲解做一个详细的说明和搬运。在写一个index界面,但是东西太多了没弄完....实在弄着太累了。对论文图表帮助很大。

注:更新,为方便学习Plotly(安利~),代码含图书目录已经上传至百度云盘。链接:https://pan.baidu.com/s/15P7NJGioPwRST1TbGVqVFA,密码:fove。


 图0 未完成的图书index.html

    Plotly是一个非常优秀的顶级绘图模块,但在国内知名度不是很高,导致网上缺少一些对Plotly这个绘图库的教程。但Plotly是以后一定肯定确定会火起来的,因为真的很符合论文审美,关键是改数据太方便了(这个可能是关键原因吧哈哈哈,后面会有解释)。

    秋涵喵的博客会跟进一些对这本书的学习内容。今天就从Plotly的简介、第一次使用Plotly绘制图形这两方面入手吧。

1. 杖藜扶我过桥东

    首先聊一聊最经典和广泛的Python可视化绘图库Matplotlib。Matplot是仿Matlab风格的绘图库,做的是Matlab的封装,绘制风格和Matlab相似(书上是这么说,不过我觉得Matlab的图更偏古典更好看,而Matplot更圆润一些偏现代审美??)。下面用我之前论文中用Matlab画的图和平时代码用于可视化的Matplot图供大家对比一下。

图1 Matlab与Matplot风格比较

    然后呢,要总结一下Matplot的缺点,不然我们也不会买本书来看Plotly这个库怎么用吧。

    Matplot的主要缺点有两点:

  • Matplot是一个静态绘图模块。每次跑完程序出一张图,如果想改数据....就要改程序重新跑一边,再看看图合不合理。这不方便我们对论文中的可视化展示进行“微调”(emmmmm~)
  • 其次Matplot绘制的结果不是很方便跟别人分享,因为仅仅是一张静态的图片。

    综合上面两点,Plotly应运而生。它底层使用的plotly.js,是之前很火的D3.js、stack.gl和SVG,用JavaScript在网页上实现类似Matlab和Matplot的图像展示功能。而且内置的绘图模块更丰富,支持在线API接口调用和离线两种生成可视化的方式。

    可以说Plotly绘图模块库既有Matplot的强大与灵活,又有Seaborn统计绘图模块库的现代配色组合与优雅报表形式(这些优点都抵不过能让我们动态改数据,重要的事情说三遍)。相当于每次运行Plotly的程序,生成的不再是图片,而是弹出一个内嵌JS的脚本HTML文件,再对图片进行存储和进一步处理就比较方便了。下图列举书上的一个图表样例,可以说是非常美观和扁平了,而且很方便改数据

图2 一个由Plotly绘制的图和表

    书上列举了一些Plotly的有点如下:

  • Plotly本身是一款独立的Web版可视化工具,界面友好,提供强大的互动性操作
  • 基于现代的配色组合和图表形式,相比Matplot、R语言的图表,更加现代和绚丽。
  • 具有简单且强大的3D图表绘制功能,支持多种格式。
  • 对图形参数的修改十分简单、直观,便于初学者
  • 有Python、R、Matlab、Jupyter、Excel等多种版本的接口。
  • 与Pandas数据分析软件无缝集成,并提供了专门的Plotly绘图模块库,设计的图表非常吸引人,而且具有高度互动性,这得益于其完善的文档和简单的Python API,用户入门也很容易。
  • 目前,Plotly绘图模块库支持的图表格式如下:
  • 基本图表:20种
  • 统计和海运方式图:12种
  • 科学图表:21种
  • 财务图表:2种
  • 地图:8种
  • 3D图表:19种
  • 报告生成:4种
  • 连接数据库:7种
  • 拟合工具:3种
  • 流动图表:4种

 

图3 官网给出的一些示例

2. 沾衣欲湿杏花雨

    下面我们还是从这个库的使用、第一个Plotly绘图程序说起吧。

    首先需要安装Plotly绘图库,用pip install plotly或者pycharm的三方管理都可以下载到。

图3 安装Plotly库

    前面说了,Plotly支持在线和离线两种使用模式,所以我们需要去官网进行在线初始化。官网链接为:https://plot.ly/ 。先注册一个你的账号并进行登录,在右上角打开setting项后,在界面左边一栏找到API Keys这一项。获取你自己username对应的API Keys。

图4 在线初始化

    把Username和API Key记下来,创建一个.py程序如下,只需要运行一次就可以完成凭证设置:

# -*- coding: utf-8 -*-

import plotly

plotly.tools.set_credentials_file(username='XXXXX',api_key='XXXX')

    会在当前用户目录产生一个凭证文件.plotly/.credentials,这个就不用管了。我们开始绘制我们的第一个Plotly图像。

  • 在线方式
# -*- coding: utf-8 -*-

import plotly.plotly as py
from plotly.graph_objs import *

trace0 = Scatter(
    x=[1, 2, 3, 4],
    y=[10, 15, 13, 17]
)
trace1 = Scatter(
    x=[1, 2, 3, 4],
    y=[16, 5, 11, 9]
)
data = Data([trace0, trace1])

py.plot(data, filename = 'first_start')

效果如下图所示:

图5 产生的html内容

    HTML上有很多的脚本功能可以自行测试一下,可以说改数据是相当方便。例如单击右上角图例的trace0,就可以把蓝线隐去;滚动滑轮可以控制横纵坐标缩放比等等等等。

  • 离线方式

    没有太大的差别,只是调用时使用py.offline.plot()方法。不同于在线方式,在线方式是将你绘制的图形公开保存在官网上。而离线的方式允许在没有网络的情况下,在本地产生一个HTML文件。效果就不再展示了。

import plotly as py
from plotly.graph_objs import Scatter, Layout, Data

trace0 = Scatter(
    x=[1, 2, 3, 4],
    y=[10, 15, 13, 17]
)
trace1 = Scatter(
    x=[1, 2, 3, 4],
    y=[16, 5, 11, 9]
)
data = Data([trace0, trace1])

py.offline.plot(data, filename = 'first_offline_start.html')

3. 吹面不寒杨柳风

    关于第一章的学习就到这了,算是给大家强烈安利使用Plotly进行绘图。然后书上的代码在github上链接为:https://github.com/sunshe35/PythonPlotlyCodes 。最后再放几个炫酷的图表作为结束吧,之后学习了会继续更新关于Plotly的东西。

图6 一些示例

    我要先帮老师做一个类似下图的图书index了。

 

转载于:https://www.cnblogs.com/catallen/p/9268859.html

这篇关于Plotly学习记录 1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/weixin_30834019/article/details/97908790
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/580458

相关文章

统一返回JsonResult踩坑的记录

《统一返回JsonResult踩坑的记录》:本文主要介绍统一返回JsonResult踩坑的记录,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录统一返回jsonResult踩坑定义了一个统一返回类在使用时,JsonResult没有get/set方法时响应总结统一返回

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

java对接海康摄像头的完整步骤记录

《java对接海康摄像头的完整步骤记录》在Java中调用海康威视摄像头通常需要使用海康威视提供的SDK,下面这篇文章主要给大家介绍了关于java对接海康摄像头的完整步骤,文中通过代码介绍的非常详细,需... 目录一、开发环境准备二、实现Java调用设备接口(一)加载动态链接库(二)结构体、接口重定义1.类型

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

apache的commons-pool2原理与使用实践记录

《apache的commons-pool2原理与使用实践记录》ApacheCommonsPool2是一个高效的对象池化框架,通过复用昂贵资源(如数据库连接、线程、网络连接)优化系统性能,这篇文章主... 目录一、核心原理与组件二、使用步骤详解(以数据库连接池为例)三、高级配置与优化四、典型应用场景五、注意事

SpringBoot实现文件记录日志及日志文件自动归档和压缩

《SpringBoot实现文件记录日志及日志文件自动归档和压缩》Logback是Java日志框架,通过Logger收集日志并经Appender输出至控制台、文件等,SpringBoot配置logbac... 目录1、什么是Logback2、SpringBoot实现文件记录日志,日志文件自动归档和压缩2.1、

qtcreater配置opencv遇到的坑及实践记录

《qtcreater配置opencv遇到的坑及实践记录》我配置opencv不管是按照网上的教程还是deepseek发现都有些问题,下面是我的配置方法以及实践成功的心得,感兴趣的朋友跟随小编一起看看吧... 目录电脑环境下载环境变量配置qmake加入外部库测试配置我配置opencv不管是按照网上的教程还是de

使用nohup和--remove-source-files在后台运行rsync并记录日志方式

《使用nohup和--remove-source-files在后台运行rsync并记录日志方式》:本文主要介绍使用nohup和--remove-source-files在后台运行rsync并记录日... 目录一、什么是 --remove-source-files?二、示例命令三、命令详解1. nohup2.

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen