[C#]winform利用seetaface6实现C#人脸检测活体检测口罩检测年龄预测性别判断眼睛状态检测

本文主要是介绍[C#]winform利用seetaface6实现C#人脸检测活体检测口罩检测年龄预测性别判断眼睛状态检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【官方框架地址】

https://github.com/ViewFaceCore/ViewFaceCore
【算法介绍】

SeetaFace6是由中国科技公司自主研发的一款人脸识别技术,它基于深度学习算法,能够快速、准确地识别出人脸,并且支持多种应用场景,如门禁系统、移动支付、安全监控等。SeetaFace6的识别准确率高达99%以上,并且可以在各种复杂的环境下进行工作,如不同的光照条件、面部朝向、面部表情等。

SeetaFace6的研发背景是基于中国科技公司对于人脸识别技术的长期研究和探索。在过去的几年中,随着深度学习技术的不断发展,人脸识别技术也取得了长足的进步。然而,由于人脸识别的技术难度较大,很多算法和模型都存在着准确率不高、容易受到环境影响等问题。因此,开发一种高效、稳定的人脸识别技术一直是人工智能领域的热门话题。

SeetaFace6的设计原理是通过深度学习算法对大量的人脸数据进行训练,从而得到一个能够自动识别出人脸的模型。这个模型可以自动提取出人脸的特征,并且与数据库中的数据进行比对,最终得到识别结果。SeetaFace6采用了多种技术手段来提高识别准确率和稳定性,如使用卷积神经网络进行特征提取、使用数据增强技术增加训练数据量、使用迁移学习等技术来优化模型等。

SeetaFace6的应用场景非常广泛。在门禁系统方面,它可以用于企业的安全防范、学校的校园安全、小区的住宅管理等场景,通过人脸识别技术来控制人员的进出和访问权限。在移动支付方面,它可以用于手机银行、第三方支付等场景,通过人脸识别技术来完成身份验证和支付操作。在安全监控方面,它可以用于公共场所的安全监控、交通监控等场景,通过人脸识别技术来追踪嫌疑人的行踪和身份。

除了以上应用场景外,SeetaFace6还可以应用于人脸美颜、人脸表情识别、人脸合成等领域。例如,在人脸美颜方面,它可以自动识别出人的面部特征和表情,并且根据不同的场景和需求进行美颜处理,让人像更加美丽动人。在人脸表情识别方面,它可以自动识别出人的面部表情和情感状态,并且根据不同的情感状态进行相应的处理和反馈。在人脸合成方面,它可以自动生成与目标人物相似的虚拟人脸图像,并且可以应用于虚拟现实、游戏开发等领域。

总之,SeetaFace6是一款高效、稳定的人脸识别技术,具有广泛的应用前景和市场前景。它的出现将为人脸识别技术的发展和应用带来新的机遇和挑战。未来,随着人工智能技术的不断发展,我们相信SeetaFace6将会在更多的领域得到应用和发展,并且将不断推动人脸识别技术的创新和进步。

【效果展示】

人脸检测

年龄预测 

 

口罩检测 

 

性别判断 

 

眼睛状态判断 

 

活体检测(局部) 

 


【官方部分代码】

注意以下是官方实例,不是我示范代码

using SkiaSharp;
using System;
using System.Diagnostics;
using System.Linq;
using System.Numerics;
using ViewFaceCore.Configs;
using ViewFaceCore.Core;
using ViewFaceCore.Extensions;
using ViewFaceCore.Model;namespace ViewFaceCore.Example.ConsoleApp
{internal class Program{private readonly static string imagePath0 = @"images/Jay_3.jpg";private readonly static string imagePath1 = @"images/Jay_4.jpg";private readonly static string maskImagePath = @"images/mask_01.jpeg";static void Main(string[] args){Console.WriteLine("Hello, ViewFaceCore!\n");//人脸识别DemoFaceDetectorDemo();//关键点标记FaceMarkDemo();//戴口罩识别DemoMaskDetectorDemo();//质量检测DemoFaceQualityDemo();//活体检测DemoAntiSpoofingDemo();//提取并对比特征值FaceRecognizerDemo();Console.ReadKey();}static void FaceDetectorDemo(){using var bitmap = SKBitmap.Decode(imagePath0);using FaceDetector faceDetector = new FaceDetector();FaceInfo[] infos = faceDetector.Detect(bitmap);Console.WriteLine($"识别到的人脸数量:{infos.Length} 个人脸信息:\n");Console.WriteLine($"No.\t人脸置信度\t位置信息");for (int i = 0; i < infos.Length; i++){Console.WriteLine($"{i}\t{infos[i].Score:f8}\t{infos[i].Location}");}Console.WriteLine();}static void MaskDetectorDemo(){using var bitmap0 = SKBitmap.Decode(imagePath0);using var bitmap_mask = SKBitmap.Decode(maskImagePath);using MaskDetector maskDetector = new MaskDetector();using FaceDetector faceDetector = new FaceDetector();//FaceType需要用口罩模型using FaceRecognizer faceRecognizer = new FaceRecognizer(new FaceRecognizeConfig(){FaceType = FaceType.Mask});using FaceLandmarker faceMark = new FaceLandmarker();var info0 = faceDetector.Detect(bitmap0).First();var result0 = maskDetector.PlotMask(bitmap0, info0);Console.WriteLine($"是否戴口罩:{(result0.Status ? "是" : "否")},置信度:{result0.Score}");var info1 = faceDetector.Detect(bitmap_mask).First();var result1 = maskDetector.PlotMask(bitmap_mask, info1);Console.WriteLine($"是否戴口罩:{(result1.Status ? "是" : "否")},置信度:{result1.Score}");var result = faceRecognizer.Extract(bitmap_mask, faceMark.Mark(bitmap_mask, info1));Console.WriteLine($"是否识别到人脸:{(result != null && result.Sum() > 1 ? "是" : "否")}");Console.WriteLine();}static void FaceMarkDemo(){using var bitmap0 = SKBitmap.Decode(imagePath0);using var faceImage = bitmap0.ToFaceImage();using FaceDetector faceDetector = new FaceDetector();using FaceLandmarker faceMark = new FaceLandmarker();Stopwatch sw = new Stopwatch();var infos = faceDetector.Detect(faceImage);var markPoints = faceMark.Mark(faceImage, infos[0]);sw.Stop();Console.WriteLine($"识别到的关键点个数:{markPoints.Length},耗时:{sw.ElapsedMilliseconds}ms");foreach (var item in markPoints){Console.WriteLine($"X:{item.X}\tY:{item.Y}");}Console.WriteLine();}static void FaceQualityDemo(){using var bitmap = SKBitmap.Decode(imagePath0);using FaceQuality faceQuality = new FaceQuality();using FaceDetector faceDetector = new FaceDetector();using FaceLandmarker faceMark = new FaceLandmarker();var info = faceDetector.Detect(bitmap).First();var markPoints = faceMark.Mark(bitmap, info);Stopwatch sw = Stopwatch.StartNew();var brightnessResult = faceQuality.Detect(bitmap, info, markPoints, QualityType.Brightness);Console.WriteLine($"{QualityType.Brightness}评估,结果:{brightnessResult},耗时:{sw.ElapsedMilliseconds}ms");sw.Restart();var resolutionResult = faceQuality.Detect(bitmap, info, markPoints, QualityType.Resolution);Console.WriteLine($"{QualityType.Resolution}评估,结果:{resolutionResult},耗时:{sw.ElapsedMilliseconds}ms");sw.Restart();var clarityResult = faceQuality.Detect(bitmap, info, markPoints, QualityType.Clarity);Console.WriteLine($"{QualityType.Clarity}评估,结果:{clarityResult},耗时:{sw.ElapsedMilliseconds}ms");sw.Restart();var clarityExResult = faceQuality.Detect(bitmap, info, markPoints, QualityType.ClarityEx);Console.WriteLine($"{QualityType.ClarityEx}评估,结果:{clarityExResult},耗时:{sw.ElapsedMilliseconds}ms");sw.Restart();var integrityExResult = faceQuality.Detect(bitmap, info, markPoints, QualityType.Integrity);Console.WriteLine($"{QualityType.Integrity}评估,结果:{integrityExResult},耗时:{sw.ElapsedMilliseconds}ms");sw.Restart();var structureeResult = faceQuality.Detect(bitmap, info, markPoints, QualityType.Structure);Console.WriteLine($"{QualityType.Structure}评估,结果:{structureeResult},耗时:{sw.ElapsedMilliseconds}ms");sw.Restart();var poseResult = faceQuality.Detect(bitmap, info, markPoints, QualityType.Pose);Console.WriteLine($"{QualityType.Pose}评估,结果:{poseResult},耗时:{sw.ElapsedMilliseconds}ms");sw.Restart();var poseExeResult = faceQuality.Detect(bitmap, info, markPoints, QualityType.PoseEx);Console.WriteLine($"{QualityType.PoseEx}评估,结果:{poseExeResult},耗时:{sw.ElapsedMilliseconds}ms");sw.Stop();Console.WriteLine();}static void AntiSpoofingDemo(){using var bitmap = SKBitmap.Decode(imagePath0);using FaceDetector faceDetector = new FaceDetector();using FaceLandmarker faceMark = new FaceLandmarker();using FaceAntiSpoofing faceAntiSpoofing = new FaceAntiSpoofing();var info = faceDetector.Detect(bitmap).First();var markPoints = faceMark.Mark(bitmap, info);Stopwatch sw = Stopwatch.StartNew();sw.Start();var result = faceAntiSpoofing.AntiSpoofing(bitmap, info, markPoints);Console.WriteLine($"活体检测,结果:{result.Status},清晰度:{result.Clarity},真实度:{result.Reality},耗时:{sw.ElapsedMilliseconds}ms");sw.Stop();Console.WriteLine();}static void FaceRecognizerDemo(){Stopwatch sw = Stopwatch.StartNew();using var faceImage0 = SKBitmap.Decode(imagePath0).ToFaceImage();using var faceImage1 = SKBitmap.Decode(imagePath1).ToFaceImage();//检测人脸信息using FaceDetector faceDetector = new FaceDetector();FaceInfo[] infos0 = faceDetector.Detect(faceImage0);FaceInfo[] infos1 = faceDetector.Detect(faceImage1);//标记人脸位置using FaceLandmarker faceMark = new FaceLandmarker();FaceMarkPoint[] points0 = faceMark.Mark(faceImage0, infos0[0]);FaceMarkPoint[] points1 = faceMark.Mark(faceImage1, infos1[0]);//提取特征值using FaceRecognizer faceRecognizer = new FaceRecognizer();float[] data0 = faceRecognizer.Extract(faceImage0, points0);float[] data1 = faceRecognizer.Extract(faceImage1, points1);//对比特征值bool isSelf = faceRecognizer.IsSelf(data0, data1);Console.WriteLine($"识别到的人脸是否为同一人:{isSelf},对比耗时:{sw.ElapsedMilliseconds}ms");Console.WriteLine();sw.Stop();}static void FaceTrackDemo(){using var faceImage = SKBitmap.Decode(imagePath0).ToFaceImage();using FaceLandmarker faceMark = new FaceLandmarker();using FaceTracker faceTrack = new FaceTracker(new FaceTrackerConfig(faceImage.Width, faceImage.Height));var result = faceTrack.Track(faceImage);if (result == null || !result.Any()){Console.WriteLine("未追踪到任何人脸!");return;}foreach (var item in result){FaceInfo faceInfo = item.ToFaceInfo();//标记人脸var points = faceMark.Mark(faceImage, faceInfo);}}}
}


【视频演示】

https://www.bilibili.com/video/BV1eK411x7wo/
【示范源码下载】
【测试环境】

vs2019

netframework4.7.2或者netframework4.8

ViewFaceCore

这篇关于[C#]winform利用seetaface6实现C#人脸检测活体检测口罩检测年龄预测性别判断眼睛状态检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/579939

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时