优化|PLSA理论与实践

2024-01-07 02:20
文章标签 实践 优化 理论 plsa

本文主要是介绍优化|PLSA理论与实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
PLSA又称为概率潜在语义分析,是一种利用概率生成模型对文本集合进行话题分析的无监督学习方法。该模型最大的特点是加入了主题这一隐变量,文本生成主题,主题生成单词,从而得到单词-文本共现矩阵。本文将对包含物理学、计算机科学、统计学、数学四个领域的15000条文献摘要的数据集(保存在Task-Corpus.csv中)使用PLSA算法进行处理。

一、算法推导

1.1 E-steps

设单词集合为 w i ( i = 1 , ⋯ , M ) w_i(i = 1,\cdots,M) wi(i=1,,M),其中 M M M为单词数;文本集合为 d j ( j = 1 , ⋯ , N ) d_j(j = 1,\cdots, N) dj(j=1,,N),其中 N N N为文本数;主题集合为 z k ( k = 1 , ⋯ , K ) z_k(k = 1,\cdots,K) zk(k=1,,K),其中 K K K为主题数。对给定的文本,主题的分布是一个有 K K K个选项的多项分布,因此参数个数为 N × K N\times K N×K,设参数矩阵为 Λ \Lambda Λ。对给定的主题,单词的分布是一个有 M M M个选项的多项分布,因此参数个数为 K × M K\times M K×M,设参数矩阵为 Θ \Theta Θ。一般来说 K ≪ M K \ll M KM,这就避免了模型的过拟合。

如果主题未知,根据全概率公式有
p ( w i , d j ) = p ( d j ) ∑ k = 1 K p ( w i ∣ z k ) p ( z k ∣ d j ) p(w_i, d_j) = p(d_j)\sum_{k = 1}^K p(w_i | z_k)p(z_k | d_j) p(wi,dj)=p(dj)k=1Kp(wizk)p(zkdj)
因此非完全数据(主题未知)的似然函数为
L ( Θ , Λ ∣ X ) = p ( X ∣ Θ ) = ∏ i = 1 M ∏ j = 1 N ( p ( d j ) ∑ k = 1 K p ( w i ∣ z k ) p ( z k ∣ d j ) ) n ( w i , d j ) L(\Theta, \Lambda | X) = p(X | \Theta) = \prod_{i = 1}^M\prod_{j = 1}^N (p(d_j)\sum_{k = 1}^K p(w_i | z_k)p(z_k | d_j))^{n(w_i, d_j)} L(Θ,Λ∣X)=p(X∣Θ)=i=1Mj=1N(p(dj)k=1Kp(wizk)p(zkdj))n(wi,dj)
对数似然为
log ⁡ L ( Θ , Λ ∣ X ) = ∑ i = 1 M ∑ j = 1 N n ( w i , d j ) log ⁡ ( p ( d j ) ∑ k = 1 K p ( w i ∣ z k ) p ( z k ∣ d j ) ) \log L(\Theta, \Lambda | X) = \sum_{i = 1}^M \sum_{j = 1}^N n(w_i, d_j)\log(p(d_j)\sum_{k = 1}^K p(w_i | z_k)p(z_k | d_j)) logL(Θ,Λ∣X)=i=1Mj=1Nn(wi,dj)log(p(dj)k=1Kp(wizk)p(zkdj))
对数似然中包含求和的对数,因此难以处理。

如果主题已知,文章 d j d_j dj出现单词 w i w_i wi的概率为
p ( w i , d j ) = p ( d j ) p ( w i ∣ z k ) p ( z k ∣ d j ) p(w_i, d_j) = p(d_j)p(w_i | z_k)p(z_k | d_j) p(wi,dj)=p(dj)p(wizk)p(zkdj)
因此完全数据的似然函数为
L ( Θ ∣ X ) = ∏ i = 1 M ∏ j = 1 N ( p ( d j ) p ( w i ∣ z k ) p ( z k ∣ d j ) ) n ( w i , d j ) L(\Theta | X) = \prod_{i = 1}^M \prod_{j = 1}^N (p(d_j)p(w_i | z_k)p(z_k | d_j))^{n(w_i, d_j)} L(Θ∣X)=i=1Mj=1N(p(dj)p(wizk)p(zkdj))n(wi,dj)
对数似然为
log ⁡ L ( Θ ∣ X ) = ∑ j = 1 N n ( w i , d j ) log ⁡ ( p ( d j ) p ( w i ∣ z k ) p ( z k ∣ d j ) ) \log L(\Theta | X) =\sum_{j = 1}^N n(w_i, d_j) \log(p(d_j)p(w_i | z_k)p(z_k | d_j)) logL(Θ∣X)=j=1Nn(wi,dj)log(p(dj)p(wizk)p(zkdj))
Q函数为对数似然 log ⁡ L ( Θ ∣ X ) \log L(\Theta | X) logL(Θ∣X)在后验分布 p ( z k ∣ w i , d j ) p(z_k | w_i, d_j) p(zkwi,dj)下的期望
Q = ∑ k = 1 K p ( z k ∣ w i , d j ) ∑ i = 1 M ∑ j = 1 N n ( w i , d j ) log ⁡ ( p ( d j ) p ( w i ∣ z k ) p ( z k ∣ d j ) ) = ∑ i = 1 M ∑ j = 1 N n ( w i , d j ) ∑ k = 1 K p ( z k ∣ w i , d j ) log ⁡ ( p ( d j ) p ( w i ∣ z k ) p ( z k ∣ d j ) ) \begin{aligned}Q &= \sum_{k = 1}^K p(z_k | w_i, d_j) \sum_{i = 1}^M \sum_{j = 1}^N n(w_i, d_j) \log(p(d_j)p(w_i | z_k)p(z_k | d_j)) \\&= \sum_{i = 1}^M \sum_{j = 1}^N n(w_i, d_j)\sum_{k = 1}^K p(z_k | w_i, d_j)\log(p(d_j)p(w_i | z_k)p(z_k | d_j))\end{aligned} Q=k=1Kp(zkwi,dj)i=1Mj=1Nn(wi,dj)log(p(dj)p(wizk)p(zkdj))=i=1Mj=1Nn(wi,dj)k=1Kp(zkwi,dj)log(p(dj)p(wizk)p(zkdj))
其中后验概率
p ( z k ∣ w i , d j ) = p ( w i ∣ z k ) p ( z k ∣ d j ) ∑ k = 1 K p ( w i ∣ z k ) p ( z k ∣ d j ) (1) p(z_k | w_i, d_j) = \frac{p(w_i | z_k) p(z_k | d_j)}{\sum_{k = 1}^K p(w_i | z_k) p(z_k | d_j)}\tag{1} p(zkwi,dj)=k=1Kp(wizk)p(zkdj)p(wizk)p(zkdj)(1)

1.2 M-step

p ( w i ∣ z k ) , p ( z k ∣ d j ) p(w_i | z_k), p(z_k | d_j) p(wizk),p(zkdj)满足约束条件
∑ i = 1 M p ( w i ∣ z k ) = 1 , k = 1 , ⋯ , K \sum_{i = 1}^M p(w_i | z_k) = 1, k = 1,\cdots,K i=1Mp(wizk)=1,k=1,,K
∑ k = 1 K p ( z k ∣ d j ) = 1 , j = 1 , ⋯ , N \sum_{k = 1}^K p(z_k | d_j) = 1,j = 1,\cdots,N k=1Kp(zkdj)=1,j=1,,N
引入拉格朗日函数
J = Q + ∑ k = 1 K r k ( 1 − ∑ i = 1 M p ( w i ∣ z k ) ) + ∑ j = 1 N ρ j ( 1 − ∑ k = 1 K p ( z k ∣ d j ) ) J = Q + \sum_{k = 1}^K r_k(1 - \sum_{i = 1}^M p(w_i | z_k)) + \sum_{j = 1}^N\rho_j(1 - \sum_{k = 1}^K p(z_k | d_j)) J=Q+k=1Krk(1i=1Mp(wizk))+j=1Nρj(1k=1Kp(zkdj))
∂ J ∂ p ∗ ( w i ∣ z k ) = ∑ j = 1 N n ( w i , d j ) p ( z k ∣ w i , d j ) p ( w i ∣ z k ) − r k = 0 \frac{\partial J}{\partial p^*(w_i | z_k)} = \sum_{j = 1}^N \frac{n(w_i, d_j) p(z_k | w_i, d_j)}{p(w_i | z_k)} - r_k = 0 p(wizk)J=j=1Np(wizk)n(wi,dj)p(zkwi,dj)rk=0
因此
r k p ∗ ( w i ∣ z k ) = ∑ j = 1 N n ( w i , d j ) p ( z k ∣ w i , d j ) r_k p^*(w_i | z_k) = \sum_{j = 1}^N n(w_i, d_j) p(z_k | w_i, d_j) rkp(wizk)=j=1Nn(wi,dj)p(zkwi,dj)
i i i求和,就有
r k = ∑ i = 1 M ∑ j = 1 N n ( w i , d j ) p ( z k ∣ w i , d j ) r_k = \sum_{i = 1}^M \sum_{j = 1}^N n(w_i, d_j) p(z_k | w_i, d_j) rk=i=1Mj=1Nn(wi,dj)p(zkwi,dj)
p ∗ ( w i ∣ z k ) = ∑ j = 1 N n ( w i , d j ) p ( z k ∣ w i , d j ) ∑ i = 1 M ∑ j = 1 N n ( w i , d j ) p ( z k ∣ w i , d j ) ( 2 ) p^*(w_i | z_k) = \frac{\sum_{j = 1}^N n(w_i, d_j) p(z_k | w_i, d_j)}{\sum_{i = 1}^M \sum_{j = 1}^N n(w_i, d_j) p(z_k | w_i, d_j)} \qquad (2) p(wizk)=i=1Mj=1Nn(wi,dj)p(zkwi,dj)j=1Nn(wi,dj)p(zkwi,dj)(2)
同理
p ∗ ( z k ∣ d j ) = ∑ j = 1 N n ( w i , d j ) p ( z k ∣ w i , d j ) ∑ i = 1 M n ( w i , d j ) ( 3 ) p^*(z_k | d_j) = \frac{\sum_{j = 1}^N n(w_i, d_j) p(z_k | w_i, d_j)}{\sum_{i = 1}^M n(w_i, d_j)} \qquad (3) p(zkdj)=i=1Mn(wi,dj)j=1Nn(wi,dj)p(zkwi,dj)(3)

( 1 ) ( 2 ) ( 3 ) (1)(2)(3) (1)(2)(3)三式共同构成PLSA算法的迭代公式。

二、算法实现

用python实现PLSA算法。首先对数据集先做预处理。对给定的文本进行分词,利用wordnet语料库将同义词进行替换(例如单复数不同的词需要替换成同一个词),并将停用词排除(停用词表在网上下载,参见作业中的stopwords.dic文件)。然后对全体文本构成的单词集合进行词频统计,构建词频矩阵 n ( w i , d j ) n(w_i, d_j) n(wi,dj)。这一部分用到了python的nltk包。核心代码如下。

words = set()word_counts = []for document in documents:seglist = word_tokenize(document)wordlist = []for word in seglist:synsets = wordnet.synsets(word)if synsets:syn_word = synsets[0].lemmas()[0].name()if syn_word not in stopwords:wordlist.append(syn_word)else:if word not in stopwords:wordlist.append(word)words = words.union(wordlist)word_counts.append(Counter(wordlist))word2id = {words:id for id, words in enumerate(words)}id2word = dict(enumerate(words))N = len(documents) # number of documentsM = len(words) # number of wordsX = np.zeros((N, M))for i in range(N):for keys in word_counts[i]:X[i, word2id[keys]] = word_counts[i][keys]

然后根据 ( 1 ) ( 2 ) ( 3 ) (1)(2)(3) (1)(2)(3)三式进行PLSA算法的编写。注意到这三个式子都可以写成矩阵的形式,提高运算效率。同时注意到这三个式子都和分子成正比,因此可以计算出份子再除以归一化常数即可。E-step的代码如下。

def E_step(lam, theta):# lam: N * K, theta: K * M, p = K * N * MN = lam.shape[0]M = theta.shape[1]lam_reshaped = np.tile(lam, (M, 1, 1)).transpose((2,1,0)) # K * N * Mtheta_reshaped = np.tile(theta, (N, 1, 1)).transpose((1,0,2)) # K * N * Mtemp = lam @ thetap = lam_reshaped * theta_reshaped / tempreturn p

M-step的代码如下。

def M_step(p, X):# p: K * N * M, X: N * M, lam: N * K, theta: K * M# update lamlam = np.sum(p * X, axis=2) # K * Nlam = lam / np.sum(lam, axis=0) # normalization for each columnlam = lam.transpose((1,0)) # N * K# update thetatheta = np.sum(p * X, axis=1) # K * Mtheta = theta / np.sum(theta, axis=1)[:, np.newaxis] # normalization for each rowreturn lam, theta

计算对数似然的代码如下。

def LogLikelihood(p, X, lam, theta):# p: K * N * M, X: N * M, lam: N * K, theta: K * Mres = np.sum(X * np.log(lam @ theta)) # N * Mreturn res

用随机数初始化 Θ , Λ \Theta,\Lambda Θ,Λ以避免落入局部最优。设定最大迭代次数为200。对数似然的阈值为10。当相邻两次对数似然的差小于阈值或者达到最大迭代次数时停止迭代。如果计算对数似然时报错,说明某个参数被舍入到0,此时也需要停止迭代。

三、结果分析

由于笔记本电脑的内存有限,从所给数据集中随机抽取1000篇文本进行实验。设定主题数为4。某次实验的结果如下。构建的字典中包含11342个单词。字典保存在dictionary.json文件中。

程序在迭代152次后停止。可以看到对数似然确实在不断上升。

每个文本的主题分布保存在DocTopicDistribution.csv文件中。每个主题的单词分布保存在TopicWordDistribution.csv文件中。每个主题中出现概率最高的9个单词保存在topics.txt文件中,如下图所示。可以看到出现概率最高的单词分别为astatine, network, Associate_in_Nursing, algorithm,分别对应了物理学、计算机科学、统计学、数学四个领域。这证明了PLSA方法的有效性。

项目开源

本项目开源在kungfu-crab/PLSA: A python implementation for PLSA(Probabilistic Latent Semantic Analysis) using EM algorithm. (github.com),仅作为学习交流使用,禁止转载与抄袭。

参考文献

[1] Hofmann, T. (1999). Probabilistic Latent Semantic Analysis. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (pp. 289-296). Morgan Kaufmann Publishers Inc.

这篇关于优化|PLSA理论与实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/578404

相关文章

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

springboot项目中整合高德地图的实践

《springboot项目中整合高德地图的实践》:本文主要介绍springboot项目中整合高德地图的实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一:高德开放平台的使用二:创建数据库(我是用的是mysql)三:Springboot所需的依赖(根据你的需求再

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

MySQL MCP 服务器安装配置最佳实践

《MySQLMCP服务器安装配置最佳实践》本文介绍MySQLMCP服务器的安装配置方法,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下... 目录mysql MCP 服务器安装配置指南简介功能特点安装方法数据库配置使用MCP Inspector进行调试开发指

SQLite3命令行工具最佳实践指南

《SQLite3命令行工具最佳实践指南》SQLite3是轻量级嵌入式数据库,无需服务器支持,具备ACID事务与跨平台特性,适用于小型项目和学习,sqlite3.exe作为命令行工具,支持SQL执行、数... 目录1. SQLite3简介和特点2. sqlite3.exe使用概述2.1 sqlite3.exe

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Springboot整合Redis主从实践

《Springboot整合Redis主从实践》:本文主要介绍Springboot整合Redis主从的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言原配置现配置测试LettuceConnectionFactory.setShareNativeConnect

java中Optional的核心用法和最佳实践

《java中Optional的核心用法和最佳实践》Java8中Optional用于处理可能为null的值,减少空指针异常,:本文主要介绍java中Optional核心用法和最佳实践的相关资料,文中... 目录前言1. 创建 Optional 对象1.1 常规创建方式2. 访问 Optional 中的值2.1

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可