内核线程创建-kthread_create

2024-01-07 01:36

本文主要是介绍内核线程创建-kthread_create,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  文章参考Linux内核线程kernel thread详解 - 知乎

大概意思就是早期创建内核线程,是交由内核处理,由内核自己完成(感觉好像也不太对呢),创建一个内核线程比较麻烦,会导致内核阻塞。因此就诞生了工作队列以及现在的kthreadd 2号进程。这样我们在创建内核线程时,只需要将消息告诉它们,实际进行内核线程创建的任务有kthreadd完成,感觉类似一个下半部。

我环境使用的是kthreadd进行内核线程的创建

内核线程创建kthread_create

kthread_create-->kthread_create_on_node-->__kthread_create_on_node

#define kthread_create(threadfn, data, namefmt, arg...) \kthread_create_on_node(threadfn, data, NUMA_NO_NODE, namefmt, ##arg)

 可以看到这里只是将创建内核线程的任务加入了链表里面,然后唤醒kthreadd进行内核线程的创建

struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),void *data, int node,const char namefmt[],va_list args)
{DECLARE_COMPLETION_ONSTACK(done);struct task_struct *task;struct kthread_create_info *create = kmalloc(sizeof(*create),GFP_KERNEL);if (!create)return ERR_PTR(-ENOMEM);/* 被创建的内核线程的信息被存放到了create_info里面 */create->threadfn = threadfn;create->data = data;create->node = node;create->done = &done;spin_lock(&kthread_create_lock);/* 将create_info加入到链表中,然后唤醒kthreadd_task(2号进程)进行后续的内核线程创建 */list_add_tail(&create->list, &kthread_create_list);spin_unlock(&kthread_create_lock);wake_up_process(kthreadd_task);/** Wait for completion in killable state, for I might be chosen by* the OOM killer while kthreadd is trying to allocate memory for* new kernel thread.*//* 这里是等待内核线程创建完成,内核线程创建完成后会释放这样完成量函数kthread里面会释放这个completion*/if (unlikely(wait_for_completion_killable(&done))) {/** If I was SIGKILLed before kthreadd (or new kernel thread)* calls complete(), leave the cleanup of this structure to* that thread.*/if (xchg(&create->done, NULL))return ERR_PTR(-EINTR);/** kthreadd (or new kernel thread) will call complete()* shortly.*/wait_for_completion(&done);}/* 函数kthread里面会将result赋值为创建好的内核线程的task_struct */task = create->result;if (!IS_ERR(task)) {static const struct sched_param param = { .sched_priority = 0 };char name[TASK_COMM_LEN];/** task is already visible to other tasks, so updating* COMM must be protected.*/vsnprintf(name, sizeof(name), namefmt, args);set_task_comm(task, name);//这里设置内核线程的名字/** root may have changed our (kthreadd's) priority or CPU mask.* The kernel thread should not inherit these properties.*/sched_setscheduler_nocheck(task, SCHED_NORMAL, &param);set_cpus_allowed_ptr(task, cpu_all_mask);}kfree(create);return task;
}

那2号进程kthreadd干了什么事情呢?

2号进程在rest_init里面创建,其处理函数为kthreadd

noinline void __ref rest_init(void)
{...............................pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);rcu_read_lock();kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);rcu_read_unlock();
............................
}

kthreadd-->create_kthread-->kernel_thread 

int kthreadd(void *unused)
{struct task_struct *tsk = current;/* Setup a clean context for our children to inherit. */set_task_comm(tsk, "kthreadd");ignore_signals(tsk);set_cpus_allowed_ptr(tsk, cpu_all_mask);set_mems_allowed(node_states[N_MEMORY]);current->flags |= PF_NOFREEZE;cgroup_init_kthreadd();/*其实就是一直检查kthread_create_list是否为空如果不为空,将不断的处理链表里面的任务处理,创建内核线程*/for (;;) {set_current_state(TASK_INTERRUPTIBLE);if (list_empty(&kthread_create_list))schedule();__set_current_state(TASK_RUNNING);spin_lock(&kthread_create_lock);while (!list_empty(&kthread_create_list)) {struct kthread_create_info *create;create = list_entry(kthread_create_list.next,struct kthread_create_info, list);list_del_init(&create->list);spin_unlock(&kthread_create_lock);create_kthread(create);spin_lock(&kthread_create_lock);}spin_unlock(&kthread_create_lock);}return 0;
}

可以看到 内核线程的创建最终还是调用的kernel_thread。创建的内核线程会执行kthread,在函数kthread里面执行了我们设置的内核线程处理函数threadfun

static void create_kthread(struct kthread_create_info *create)
{int pid;#ifdef CONFIG_NUMAcurrent->pref_node_fork = create->node;
#endif/* We want our own signal handler (we take no signals by default). *//* 最终在kthread里面调用到我们设置的回调函数 */pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);if (pid < 0) {/* If user was SIGKILLed, I release the structure. */struct completion *done = xchg(&create->done, NULL);if (!done) {kfree(create);return;}create->result = ERR_PTR(pid);complete(done);}
}

kthread运行线程处理函数 

执行到这里,就算内核线程创建成功了.只不过它不会立即执行我们的threadfn(即创建内核线程时指定的函数),它会先释放completion,并让出cpu。这就是kthread_create后还需要wake_up_process的原因。

static int kthread(void *_create)
{/* Copy data: it's on kthread's stack */struct kthread_create_info *create = _create;int (*threadfn)(void *data) = create->threadfn;void *data = create->data;struct completion *done;struct kthread *self;int ret;self = kzalloc(sizeof(*self), GFP_KERNEL);set_kthread_struct(self);/* If user was SIGKILLed, I release the structure. *//* 将create->done赋值为NULL,并返回create->done原来的值 */done = xchg(&create->done, NULL);if (!done) {kfree(create);do_exit(-EINTR);}if (!self) {create->result = ERR_PTR(-ENOMEM);complete(done);do_exit(-ENOMEM);}self->data = data;init_completion(&self->exited);init_completion(&self->parked);/* 此时的current就已经是我们创建好的内核线程了 */current->vfork_done = &self->exited;/* OK, tell user we're spawned, wait for stop or wakeup */__set_current_state(TASK_UNINTERRUPTIBLE);//__kthread_create_on_node里面将result当做返回值的原因在这里体现create->result = current;/* 在这里释放的completion,__kthread_create_on_node才会继续往下走 */complete(done);/*可以看到内核线程创建完了会先让出cpu,并不会立即执行我们的线程处理函数这就是我们为什么需要wake_up_process的原因,需要wake之后,才会继续从这里执行然后走到我们的threadfn*/schedule();ret = -EINTR;/*这个检查,我怀疑就是导致kthread_stop表现出不同行为的原因*/if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {cgroup_kthread_ready();__kthread_parkme(self);/* 执行内核线程设置的处理函数 */ret = threadfn(data);}/* 可以看到如果threadfn执行完了,内核线程退出是do_exit */do_exit(ret);
}

经过实际验证确实是kthread调用了complete(done);,kthread_create才能返回,否则__kthread_create_on_node会一直等待completion

测试代码如下

起了个定时器,定时器里面唤醒了一个内核线程.内核线程里面做了两个事情,一个是将comp_block设置为true,即跳过complete(done),另外一个是创建一个内核线程,看看是否会阻塞

struct task_struct *task;
struct timer_list timer;
/* 通过该变量控制是否是否completion */
extern bool comp_block;int kill_thread(void* a)
{/* 不释放completion,然后再看看kthread_create是否会阻塞 */comp_block = true;printk(KERN_EMERG "\r\n before create thread\n");kthread_create(test_thread, NULL, "test_task");printk(KERN_EMERG "\r\n after create thread\n");return;
}
void timer_work(unsigned long data)
{wake_up_process(task);return;
}static int smsc911x_init(struct net_device *dev)
{
...............................printk(KERN_EMERG "\r\n softlockup simulate, in_interrupt %u in_softirq %u, NR_CPUS %d\n", in_interrupt(), in_softirq(), NR_CPUS);timer.expires=jiffies+msecs_to_jiffies(20000);timer.function=timer_work;init_timer(&timer);add_timer(&timer);printk(KERN_EMERG "\r\n create thread\n");	task = kthread_create(kill_thread, NULL, "kill_task");printk(KERN_EMERG "\r\n create thread end\n");
....................................
}
bool comp_block = false;
static int kthread(void *_create)
{
.............................../* OK, tell user we're spawned, wait for stop or wakeup */__set_current_state(TASK_UNINTERRUPTIBLE);create->result = current;if (false == comp_block){complete(done);}schedule();
..........................................
}

效果展示 :可以看到并未打印kthread_create后面的log,并且内核线程kill_task也是一直无法退出

 

 如果定时器里面不设置comp_block的值,即正常释放completion,log如下

内核线程退出kthread_stop

kthread_stop:只是告诉内核线程应该退出了,但是要不要退出,还需要看内核线程处理函数是否检查该消息,并且检查到以后还必须主动退出。

1、设置内核线程为KTHREAD_SHOULD_STOP,当内核线程的处理函数用kthread_should_stop检查标记时,能感知到该事件(如果内核线程一直不检查,那么即使调用了kthread_stop也是没有用的)

2、重新唤醒内核线程,如何内核线程没有运行,那么也是无法感知到这个事件的

3、等待completion释放

int kthread_stop(struct task_struct *k)
{struct kthread *kthread;int ret;trace_sched_kthread_stop(k);get_task_struct(k);kthread = to_kthread(k);set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);kthread_unpark(k);wake_up_process(k);wait_for_completion(&kthread->exited);ret = k->exit_code;put_task_struct(k);trace_sched_kthread_stop_ret(ret);return ret;
}

wait_for_completion(&kthread->exited); 

这个是在哪里释放的呢?

exited其实就是vfork_done,

static int kthread(void *_create)
{
........................................self->data = data;init_completion(&self->exited);init_completion(&self->parked);/* 此时的current就已经是我们创建好的内核线程了 */current->vfork_done = &self->exited;..............................do_exit(ret);
}

 那么vfork_done是在哪里释放的呢?

do_exit-->exit_mm-->exit_mm_release-->mm_release

static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
{
.................................../** All done, finally we can wake up parent and return this mm to him.* Also kthread_stop() uses this completion for synchronization.*/if (tsk->vfork_done)complete_vfork_done(tsk);
}

这篇关于内核线程创建-kthread_create的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/578313

相关文章

在Java中实现线程之间的数据共享的几种方式总结

《在Java中实现线程之间的数据共享的几种方式总结》在Java中实现线程间数据共享是并发编程的核心需求,但需要谨慎处理同步问题以避免竞态条件,本文通过代码示例给大家介绍了几种主要实现方式及其最佳实践,... 目录1. 共享变量与同步机制2. 轻量级通信机制3. 线程安全容器4. 线程局部变量(ThreadL

Linux线程同步/互斥过程详解

《Linux线程同步/互斥过程详解》文章讲解多线程并发访问导致竞态条件,需通过互斥锁、原子操作和条件变量实现线程安全与同步,分析死锁条件及避免方法,并介绍RAII封装技术提升资源管理效率... 目录01. 资源共享问题1.1 多线程并发访问1.2 临界区与临界资源1.3 锁的引入02. 多线程案例2.1 为

Java中的xxl-job调度器线程池工作机制

《Java中的xxl-job调度器线程池工作机制》xxl-job通过快慢线程池分离短时与长时任务,动态降级超时任务至慢池,结合异步触发和资源隔离机制,提升高频调度的性能与稳定性,支撑高并发场景下的可靠... 目录⚙️ 一、调度器线程池的核心设计 二、线程池的工作流程 三、线程池配置参数与优化 四、总结:线程

WinForm跨线程访问UI及UI卡死的解决方案

《WinForm跨线程访问UI及UI卡死的解决方案》在WinForm开发过程中,跨线程访问UI控件和界面卡死是常见的技术难题,由于Windows窗体应用程序的UI控件默认只能在主线程(UI线程)上操作... 目录前言正文案例1:直接线程操作(无UI访问)案例2:BeginInvoke访问UI(错误用法)案例

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

Linux线程之线程的创建、属性、回收、退出、取消方式

《Linux线程之线程的创建、属性、回收、退出、取消方式》文章总结了线程管理核心知识:线程号唯一、创建方式、属性设置(如分离状态与栈大小)、回收机制(join/detach)、退出方法(返回/pthr... 目录1. 线程号2. 线程的创建3. 线程属性4. 线程的回收5. 线程的退出6. 线程的取消7.

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

创建Java keystore文件的完整指南及详细步骤

《创建Javakeystore文件的完整指南及详细步骤》本文详解Java中keystore的创建与配置,涵盖私钥管理、自签名与CA证书生成、SSL/TLS应用,强调安全存储及验证机制,确保通信加密和... 目录1. 秘密键(私钥)的理解与管理私钥的定义与重要性私钥的管理策略私钥的生成与存储2. 证书的创建与

Javaee多线程之进程和线程之间的区别和联系(最新整理)

《Javaee多线程之进程和线程之间的区别和联系(最新整理)》进程是资源分配单位,线程是调度执行单位,共享资源更高效,创建线程五种方式:继承Thread、Runnable接口、匿名类、lambda,r... 目录进程和线程进程线程进程和线程的区别创建线程的五种写法继承Thread,重写run实现Runnab

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected