jetson AGC orin 配置pytorch和cuda使用、yolov8 TensorRt测试

2024-01-07 00:12

本文主要是介绍jetson AGC orin 配置pytorch和cuda使用、yolov8 TensorRt测试,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1、安装环境
    • 1.1、检查系统环境
    • 1.2、下载安装pytorch
    • 1.3、下载安装torchvision
    • 1.3、测试安装是否成功
  • 2、yolov8测试
    • 2.1、官方python脚本测试
    • 2.2、tensorrt 模型转换
    • 2.3、tensorrt c++ 测试

1、安装环境

1.1、检查系统环境

检查系统环境、安装jetpack版本,执行 cat /etc/nv_tegra_release sudo apt-cache show nvidia-jetpack 查看。

$  cat /etc/nv_tegra_release
# R35 (release), REVISION: 4.1, GCID: 33958178, BOARD: t186ref, EABI: aarch64, DATE: Tue Aug  1 19:57:35 UTC 2023$ sudo apt-cache show nvidia-jetpack
Package: nvidia-jetpack
Version: 5.1.2-b104
Architecture: arm64
Maintainer: NVIDIA Corporation
Installed-Size: 194
Depends: nvidia-jetpack-runtime (= 5.1.2-b104), nvidia-jetpack-dev (= 5.1.2-b104)
Homepage: http://developer.nvidia.com/jetson
Priority: standard
Section: metapackages
Filename: pool/main/n/nvidia-jetpack/nvidia-jetpack_5.1.2-b104_arm64.deb
Size: 29304
SHA256: fda2eed24747319ccd9fee9a8548c0e5dd52812363877ebe90e223b5a6e7e827
SHA1: 78c7d9e02490f96f8fbd5a091c8bef280b03ae84
MD5sum: 6be522b5542ab2af5dcf62837b34a5f0
Description: NVIDIA Jetpack Meta Package
Description-md5: ad1462289bdbc54909ae109d1d32c0a8

1.2、下载安装pytorch

根据官网提供链接安装适配的 pytorch-gpu版本(cpu直接pip install pytorch即可)。例如本机使用的 jetpack 5.1.2,选择安装 PyTorch v2.1.0 版本即可。
在这里插入图片描述
下载 whl 文件,之后pip install 即可。

$ wget https://developer.download.nvidia.cn/compute/redist/jp/v512/pytorch/torch-2.1.0a0+41361538.nv23.06-cp38-cp38-linux_aarch64.whl$ pip install torch-2.1.0a0+41361538.nv23.06-cp38-cp38-linux_aarch64.whl

安装后,在python中执行

import torch

可能出现的错误,和解决办法

  • ImportError: libopenblas.so.0: cannot open shared object file: No such file or directory
    sudo apt-get install libopenblas-base
    

1.3、下载安装torchvision

需要便于安装对应版本torchvision,查看 官网链接 ,要求PyTorch v2.1.0 安装 0.16 版本
在这里插入图片描述
这里选择 0.16.1 版本,下载指定源码进行编译安装


$ git clone --branch v0.16.1 https://github.com/pytorch/vision torchvision`
$ export BUILD_VERSION=0.16.1
$ python setup.py install --user

编译中出现依赖,根据情况安装

# sudo apt-get install libjpeg-dev zlib1g-dev libpython3-dev libopenblas-dev libavcodec-dev libavformat-dev libswscale-dev

编译后验证,

import torchvision

可能的错误,

  • /home/hard_disk/downloads/torchvision/torchvision/io/image.py:13: UserWarning: Failed to load image Python extension: ''If you don’t plan on using image functionality from torchvision.io, you can ignore this warning. Otherwise, there might be something wrong with your environment. Did you have libjpeg or libpng installed before building torchvision from source?

    安装 sudo apt-get install libjpeg-dev zlib1g-dev 之后,删除所有缓存和编译零时文件,再重新编译安装即可。

1.3、测试安装是否成功

测试安装是否成功,

>>> import torch
>>> print(torch.__version__)
>>> print('CUDA available: ' + str(torch.cuda.is_available()))
>>> print('cuDNN version: ' + str(torch.backends.cudnn.version()))
>>> a = torch.cuda.FloatTensor(2).zero_()
>>> print('Tensor a = ' + str(a))
>>> b = torch.randn(2).cuda()
>>> print('Tensor b = ' + str(b))
>>> c = a + b
>>> print('Tensor c = ' + str(c))>>> import torchvision
>>> print(torchvision.__version__)

若均不报错,且能正常输出说明安装成功,如下图
在这里插入图片描述

2、yolov8测试

使用yolov8m.pt进行测试

2.1、官方python脚本测试

$ yolo predict model=yolov8m.pt source=bus.jpg device=cpu
Ultralytics YOLOv8.0.227 🚀 Python-3.8.18 torch-2.1.0a0+41361538.nv23.06 CPU (ARMv8 Processor rev 1 (v8l))
YOLOv8m summary (fused): 218 layers, 25886080 parameters, 0 gradients, 78.9 GFLOPsimage 1/1 /home/hard_disk/projects/yolov8-ultralytics/bus.jpg: 640x480 4 persons, 1 bus, 1492.5ms
Speed: 12.5ms preprocess, 1492.5ms inference, 9.3ms postprocess per image at shape (1, 3, 640, 480)

使用cpu推理耗时1.5s,gpu耗时0.35s。

s$ yolo predict model=yolov8m.pt source=bus.jpg device=0
Ultralytics YOLOv8.0.227 🚀 Python-3.8.18 torch-2.1.0a0+41361538.nv23.06 CUDA:0 (Orin, 30593MiB)
YOLOv8m summary (fused): 218 layers, 25886080 parameters, 0 gradients, 78.9 GFLOPsimage 1/1 /home/hard_disk/projects/yolov8-ultralytics/bus.jpg: 640x480 4 persons, 1 bus, 349.9ms
Speed: 8.7ms preprocess, 349.9ms inference, 6.8ms postprocess per image at shape (1, 3, 640, 480)

由于gpu推理通常需要预热,拷贝图像(bus.jpg)到文件夹重复多张(以10张为例)即可,重新运行,基本推理耗时28ms

$ yolo predict model=yolov8m.pt source=imgs device=0
Ultralytics YOLOv8.0.227 🚀 Python-3.8.18 torch-2.1.0a0+41361538.nv23.06 CUDA:0 (Orin, 30593MiB)
YOLOv8m summary (fused): 218 layers, 25886080 parameters, 0 gradients, 78.9 GFLOPsimage 1/10 /home/hard_disk/projects/yolov8-ultralytics/imgs/bus.jpg: 640x480 4 persons, 1 bus, 341.4ms
image 2/10 /home/hard_disk/projects/yolov8-ultralytics/imgs/bus_1.jpg: 640x480 4 persons, 1 bus, 43.2ms
image 3/10 /home/hard_disk/projects/yolov8-ultralytics/imgs/bus_2.jpg: 640x480 4 persons, 1 bus, 37.2ms
image 4/10 /home/hard_disk/projects/yolov8-ultralytics/imgs/bus_3.jpg: 640x480 4 persons, 1 bus, 28.5ms
image 5/10 /home/hard_disk/projects/yolov8-ultralytics/imgs/bus_4.jpg: 640x480 4 persons, 1 bus, 31.1ms
image 6/10 /home/hard_disk/projects/yolov8-ultralytics/imgs/bus_5.jpg: 640x480 4 persons, 1 bus, 28.4ms
image 7/10 /home/hard_disk/projects/yolov8-ultralytics/imgs/bus_6.jpg: 640x480 4 persons, 1 bus, 28.3ms
image 8/10 /home/hard_disk/projects/yolov8-ultralytics/imgs/bus_7.jpg: 640x480 4 persons, 1 bus, 28.8ms
image 9/10 /home/hard_disk/projects/yolov8-ultralytics/imgs/bus_8.jpg: 640x480 4 persons, 1 bus, 28.3ms
image 10/10 /home/hard_disk/projects/yolov8-ultralytics/imgs/bus_9.jpg: 640x480 4 persons, 1 bus, 28.5ms
Speed: 7.9ms preprocess, 62.4ms inference, 5.0ms postprocess per image at shape (1, 3, 640, 480)

2.2、tensorrt 模型转换

默认安装在系统环境中,若在虚拟环境中,可以创建软连接到虚拟环境中

sudo ln -s /usr/lib/python3.8/dist-packages/tensorrt* /home/hard_disk/miniconda3/envs/yolo_pytorch/lib/python3.8/site-packages/
# 验证安装 输出 8.5.2.2
python -c "import tensorrt;  print(tensorrt.__version__);"

使用/usr/src/tensorrt/bin/trtexec --onnx=yolov8m.onnx --saveEngine=yolov8m.onnx.trt导出默认的fp32模型,耗时11分钟,40qps,加载测试如下
在这里插入图片描述
使用半精度浮点进行模型转换测试/usr/src/tensorrt/bin/trtexec --onnx=yolov8m.onnx --saveEngine=yolov8m.onnx.trt --fp16,执行耗时32分钟(模型文件大小缩小一半),95qps,,如下
在这里插入图片描述

2.3、tensorrt c++ 测试

先给出 cmake 文件

cmake_minimum_required(VERSION 3.0)
project(yolov8)#set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-deprecated-declarations")# opencv
find_package(OpenCV 4.5.4 REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})include_directories("/usr/local/cuda-11.4/include")
link_directories("/usr/local/cuda-11.4/lib64")# tensorrt
include_directories("/usr/include/aarch64-linux-gnu")
link_directories("/usr/lib/aarch64-linux-gnu")# target and lib
add_executable(${PROJECT_NAME} main.cpp)target_link_libraries(${PROJECT_NAME}  ${OpenCV_LIBS}  nvinfernvparserscudartcublascudnn
)

直接给出完整cpp代码

#include "opencv2/opencv.hpp"#include "NvInfer.h"
#include <cuda_runtime_api.h>
#include <random>#include <fstream>
#include <string>#define CHECK(status)                                                                      \do                                                                                     \{                                                                                      \auto ret = (status);                                                               \if (ret != 0)                                                                      \{                                                                                  \std::cerr << "Cuda failure: " << ret << std::endl;                             \abort();                                                                       \}                                                                                  \} while (0)class Logger : public nvinfer1::ILogger
{
public:Logger(Severity severity = Severity::kWARNING) : severity_(severity) {}virtual void log(Severity severity, const char* msg) noexcept override{// suppress info-level messagesif(severity <= severity_)std::cout << msg << std::endl;}nvinfer1::ILogger& getTRTLogger() noexcept{return *this;}
private:Severity severity_;
};struct InferDeleter
{template <typename T>void operator()(T* obj) const{delete obj;}
};template <typename T>
using SampleUniquePtr = std::unique_ptr<T, InferDeleter>;//int build();
int inference();int main(int argc, char** argv)
{return inference();
}void drawPred(int classId, float conf, int left, int top, int right, int bottom, cv::Mat& frame);
void postprocess(cv::Mat& frame, const cv::Mat outs);auto confThreshold = 0.25f;
auto scoreThreshold = 0.45f;
auto nmsThreshold = 0.5f;
auto inpWidth = 640.f;
auto inpHeight = 640.f;
auto classesSize = 80;#include <numeric>
#include <opencv2/dnn.hpp>int inference()
{Logger logger(nvinfer1::ILogger::Severity::kVERBOSE);/*trtexec.exe --onnx=yolov8m.onnx --explicitBatch --fp16 --saveEngine=model.trt*/std::string trtFile = R"(E:\DeepLearning\yolov8-ultralytics/yolov8m.onnx.trt)";//std::string trtFile = "model.test.trt";std::ifstream ifs(trtFile, std::ifstream::binary);if(!ifs) {return false;}ifs.seekg(0, std::ios_base::end);int size = ifs.tellg();ifs.seekg(0, std::ios_base::beg);std::unique_ptr<char> pData(new char[size]);ifs.read(pData.get(), size);ifs.close();// engine模型std::shared_ptr<nvinfer1::ICudaEngine> mEngine;{SampleUniquePtr<nvinfer1::IRuntime> runtime{nvinfer1::createInferRuntime(logger.getTRTLogger())};mEngine = std::shared_ptr<nvinfer1::ICudaEngine>(runtime->deserializeCudaEngine(pData.get(), size), InferDeleter());}auto context = SampleUniquePtr<nvinfer1::IExecutionContext>(mEngine->createExecutionContext());// 显存分配std::vector<void*> bindings(mEngine->getNbBindings());//auto t1 = mEngine->getBindingDataType(0);//auto t2 = mEngine->getBindingDataType(1);//CHECK(cudaMalloc(&bindings[0], sizeof(float) * 1 * 3 * 640 * 640)); // type: float32[1,3,640,640]//CHECK(cudaMalloc(&bindings[1], sizeof(int) * 1 * 84 * 8400));   // type: float32[1,84,8400]for(int i = 0; i < bindings.size(); i++) {nvinfer1::DataType type = mEngine->getBindingDataType(i);nvinfer1::Dims dims = mEngine->getBindingDimensions(i);size_t volume = std::accumulate(dims.d, dims.d + dims.nbDims, 1, std::multiplies<size_t>());switch(type) {case nvinfer1::DataType::kINT32:case nvinfer1::DataType::kFLOAT: volume *= 4; break;  // 明确为类型 floatcase nvinfer1::DataType::kHALF: volume *= 2; break;case nvinfer1::DataType::kBOOL:case nvinfer1::DataType::kINT8:default:break;}CHECK(cudaMalloc(&bindings[i], volume));}// 输入cv::Mat img = cv::imread(R"(E:\DeepLearning\yolov5\data\images\bus.jpg)");cv::Mat blob = cv::dnn::blobFromImage(img, 1 / 255., cv::Size(inpWidth,inpHeight), {0,0,0}, true, false);//blob = blob * 2 - 1;cv::Mat pred(cv::Size(8400, 84), CV_32F, {255,255,255});// 推理CHECK(cudaMemcpy(bindings[0], static_cast<const void*>(blob.data), 1 * 3 * 640 * 640 * sizeof(float), cudaMemcpyHostToDevice));context->executeV2(bindings.data());context->executeV2(bindings.data());context->executeV2(bindings.data());context->executeV2(bindings.data());CHECK(cudaMemcpy(static_cast<void*>(pred.data), bindings[1], 1 * 84 * 8400 * sizeof(int), cudaMemcpyDeviceToHost));auto t1 = cv::getTickCount();CHECK(cudaMemcpy(bindings[0], static_cast<const void*>(blob.data), 1 * 3 * 640 * 640 * sizeof(float), cudaMemcpyHostToDevice));context->executeV2(bindings.data());CHECK(cudaMemcpy(static_cast<void*>(pred.data), bindings[1], 1 * 84 * 8400 * sizeof(int), cudaMemcpyDeviceToHost));auto t2 = cv::getTickCount();std::string label = cv::format("inference time: %.2f ms", (t2 - t1) / cv::getTickFrequency() * 1000);std::cout << label << std::endl;cv::putText(img, label, cv::Point(10, 50), cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 255, 0));// 后处理cv::Mat tmp = pred.t();postprocess(img, tmp);cv::imshow("res",img);cv::waitKey();// 资源释放cudaFree(bindings[0]);cudaFree(bindings[1]);return 0;
}void postprocess(cv::Mat& frame, const cv::Mat tmp)
{using namespace cv;using namespace cv::dnn;// yolov8 has an output of shape (batchSize, 84, 8400) (box[x,y,w,h] + confidence[c])auto tt1 = cv::getTickCount();auto inputSz = frame.size();float x_factor = inputSz.width / inpWidth;float y_factor = inputSz.height / inpHeight;std::vector<int> class_ids;std::vector<float> confidences;std::vector<cv::Rect> boxes;float* data = (float*)tmp.data;for(int i = 0; i < tmp.rows; ++i) {//float confidence = data[4];//if(confidence >= confThreshold) {float* classes_scores = data + 4;cv::Mat scores(1, classesSize, CV_32FC1, classes_scores);cv::Point class_id;double max_class_score;minMaxLoc(scores, 0, &max_class_score, 0, &class_id);if(max_class_score > scoreThreshold) {confidences.push_back(max_class_score);class_ids.push_back(class_id.x);float x = data[0];float y = data[1];float w = data[2];float h = data[3];int left = int((x - 0.5 * w) * x_factor);int top = int((y - 0.5 * h) * y_factor);int width = int(w * x_factor);int height = int(h * y_factor);boxes.push_back(cv::Rect(left, top, width, height));}//}data += tmp.cols;}std::vector<int> indices;NMSBoxes(boxes, confidences, scoreThreshold, nmsThreshold, indices);auto tt2 = cv::getTickCount();std::string label = format("postprocess time: %.2f ms", (tt2 - tt1) / cv::getTickFrequency() * 1000);cv::putText(frame, label, Point(10, 30), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));for(size_t i = 0; i < indices.size(); ++i) {int idx = indices[i];Rect box = boxes[idx];drawPred(class_ids[idx], confidences[idx], box.x, box.y,box.x + box.width, box.y + box.height, frame);}
}void drawPred(int classId, float conf, int left, int top, int right, int bottom, cv::Mat& frame)
{using namespace cv;rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 255, 0));std::string label = format("%d: %.2f", classId, conf);Scalar color(rand(), rand(), rand());int baseLine;Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);top = max(top, labelSize.height);rectangle(frame, Point(left, top - labelSize.height),Point(left + labelSize.width, top + baseLine), color, FILLED);cv::putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.5, Scalar());
}

运行命令行截图如
在这里插入图片描述

前向推理耗时12.68ms,NMS耗时2.7ms,检测结果显示如下

在这里插入图片描述

这篇关于jetson AGC orin 配置pytorch和cuda使用、yolov8 TensorRt测试的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/578098

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式